
DTP Computational Physiology
Documentation

Release 2017.02

University of Auckland

Sep 07, 2017





Contents

1 Software Tools 3
1.1 MAP Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 OpenCOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Install and Launch OpenCOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Clinical Workflows 7
2.1 Computational Physiology - Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Image Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 3D-View Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Computational Physiology - Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.1 Model Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.2.2 DTP-ModelConstruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Computational Physiology - Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.1 Integrating systems of differential equations . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.3.2 Biological Complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
2.3.3 Multiscale simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.4 Where do these models come from? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3.5 TL;DR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4 Computational Physiology - Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.4.1 Visualisation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.5 Computational Physiology - Complete Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
2.5.1 Complete Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3 Introduction to (ODE) Modelling Best Practices 67
3.1 Reproducible and reusable model descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.1.2 Modularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
3.1.3 Reuse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.2 Collaboration, versioning, discovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.2.1 The Physiome Model Repository and the link to bioinformatics . . . . . . . . . . . . . . . . 98
3.2.2 Using PMR with OpenCOR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

3.3 A bond graph-based method for representing physiology . . . . . . . . . . . . . . . . . . . . . . . . 105
3.3.1 Example models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4 OpenCOR tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.4.1 Tutorial on CellML, OpenCOR & the Physiome Model Repository . . . . . . . . . . . . . . 106

4 Projects 121

i



4.1 Project: Parameter Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.1.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.1.2 Geometric model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
4.1.3 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
4.1.4 Constitutive model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.1.5 Workflow construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
4.1.6 Parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.2 Project: Femur Fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.2 Tips for completing the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2.3 Scoring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.3 Project: Bond Graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.3.1 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.3.2 Tips for completing the project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5 DTP Computational Physiology to do list 137
5.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.2 Within sections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Bibliography 139

ii
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Note: This is release 2017.02 of the DTP Computational Physiology module documentation. Some previous releases
are available at: http://readthedocs.org/projects/dtp-compphys/versions/

Anonymous feedback on any part of this module can be left at: http://goo.gl/forms/0OOhzkwnFo

Welcome to the Computational Physiology module of the Doctoral Training Programme from the MedTech CoRE.
In this series of tutorials, you will be exposed to a selection of the methods used by scientists in the MedTech CoRE
working in the field of computational physiology - the application of engineering and mathematical sciences to the
study of physiology.

This series of tutorials will first guide you through the main steps in a “standard” clinical workflow that takes advantage
of computational physiology: image processing, model building, simulation, and visualisation. You will then be led
through the development and implementation of a complete clinically focused workflow which will take advantage of
the skills you have developed in the earlier modules. In demonstrating each of these steps we make use of examples
for various organ systems being investigated under the MedTech CoRE. Each session will begin with a introductory
lecture from a scientist working on the example organ system for that session who will present current research relevant
to the MedTech CoRE. We hope to make recordings of these lectures available to those following the module remotely.

Following the clinical workflow tutorials we venture into deeper into the world of standards and repositories to ex-
plore their importance in enabling the reproducibility and reusability of computational models as used in the clinical
workflow tutorials. Latest research methods in the contruction and management of these computational models will
be presented and time devoted to playing with these methods in order to emphasise the importance of reuse and
reproducibility in the computational physiology domain.

Finally, several mini-projects are offered for students to work through on their own or in groups. These projects will
collectively demonstrate the application of all the previous material in real life scientific research scenarios.

Contents 1
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CHAPTER 1

Software Tools

Here we introduce the tools used in this module and provide instructions for getting them set up to perform the tasks
in this module.

Contents

• Software Tools

– MAP Client

– OpenCOR

MAP Client

The Musculoskeletal Atlas Project Client (MAP Client) is an open-source cross-platform framework for managing
workflows. A workflow, as far as MAP Client is concerned, consists of a number of connected workflow steps. The
MAP Client framework is a plugin-based application where the plugins are workflow steps. MAP Client is a Python
based application which makes use of the Qt widget library.

Documentation for the project can be found at MAP Client documentation.

MAP Client is available to download from MAP Client download

To get the best out of the MAP Client you will need to get some plugins, by default the MAP Client comes with five
basic plugins. A collection of available plugins can be found at MAP Client plugins.

OpenCOR

Instructions for obtaining and using OpenCOR are covered in the Install and Launch OpenCOR.

3
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Install and Launch OpenCOR

Download OpenCOR from www.opencor.ws. Versions are available for Windows, OS X and Linux1. Note that some
aspects of this tutorial require OpenCOR snapshot 2017-02-10 (or newer). Create a shortcut to the executable (found
in the bin directory) on your desktop and click on this to launch OpenCOR. A window will appear that looks like Fig.
1.1(a).

Fig. 1.1: OpenCOR application (a) Default positioning of dockable windows. (b) An alternative configuration achieved
by dragging and dropping the dockable windows.

Dockable Windows

The central area is used to interact with files. By default, no files are open, hence the OpenCOR logo is shown instead.
To the sides, there are dockable windows, which provide additional features. Those windows can be dragged and
dropped to the top or bottom of the central area as shown in Figure 1(b) or they can be individually undocked or
closed. All closed panels can be re-displayed by enabling them in the View menu, or by using the Tools menu Reset
All option. The key combination Control-spacebar removes (for less clutter) or restores these two side panels2.

Any of the subpanels (Physiome Model Repository, File Browser, and File Organiser) can be closed with the top right
delete button, and then restored from the View .. Windows .. menu. Files can be dragged and dropped into the File
Organiser to create a local directory structure for your files.

Plugins

OpenCOR has a plugin architecture and can be used with or without a range of modules. These can be viewed under
the Tools menu. By default they are all included, as shown in Fig. 1.2. Information about developing plugins for
OpenCOR is also available.

1 http://opencor.ws/user/supportedPlatforms.html
2 -spacebar being the equivalent on OS X.

4 Chapter 1. Software Tools
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Fig. 1.2: OpenCOR tools menu showing the plugins that are selectable. Untick the box on the bottom left to show all
plugins.

1.2. OpenCOR 5
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CHAPTER 2

Clinical Workflows

In Fig. 2.1 you can see an example of a clinical workflow that adopts a computational physiology approach. In
summary: 1) clinical observations are made (in this example, images from a mamographic scan); 2) a model is
customised to those observations (a geometric model specific to the given patient); 3) simulations are performed as
part of the investigation (simulating mamographic compression on the geometrical model to determine the affect on
internal structures); 4) some kind of visualisation is performed to help interpret the simulation results in regard to
the clinical observations (registering mamographic and MRI images to highlight potential calcifications in the breast
tissue); and 5) the preceeding steps are wrapped into a customised user interface which can be provided to the clincians
for them to execute these steps in the clinc.

The goal of these tutorials is to make you aware of the key skills required at each step in the process described above
and in Fig. 2.1. We achieve this here by leading you through some examples of the various skills and demonstrate their
applicability across a range of organ systems and spatial scales.

Computational Physiology - Segmentation

Contents:

Image Segmentation

This tutorial is on image segmentation and image data post-processing. The objectives are to gain a basic understanding
of the different types of images frequently acquired from medical devices. Understand some of the DICOM standard
and the information that is useful to image segmentation. Gain some knowledge on manual and semi-automatic image
segmentation and be aware of the reasons for post-processing segmented data.

Overview

Segmentation begins with the acquisition of images. The images used in our domain originate from medical devices.
The Types of images that we come across can be roughly divided into two groups macroscopic anatomical images
and microscopic anatomical images. The macroscopic image modalities that we typically come across are Magnetic

7
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Fig. 2.1: An example of a clinical workflow, showing the steps in the process which form the basis for the Computa-
tional Physiology module.

8 Chapter 2. Clinical Workflows
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Resonance Images (MRI), Computed Tomography (CT) images and Ultrasound (US). The microscopic images that
we use are confocal images.

Most medical devices store their image output using the the Digital Imaging and Communications in Medicine (DI-
COM) standard. The DICOM standard is a standard that covers the handling, storing, printing and transmitting of
information in medical imaging. It includes a file format definition and a network protocol definition. We shall look
at the information that can be stored in the DICOM file format and look at how we can make use of it.

With the information garnered from the DICOM file we will orient and display the images for visualisation, ready for
segmentation. In the task 2 the segmentation of the images will use a technique called point-and-click digitisation, in
task 3 we will perform semi-automatic segmentation using edge detection and edge erosion. In task 4 we will perform
some post-processing on the segmented data to transform the data from the machine or magnet coordinates to heart
coordinates. Finally, we will put it all together to create a segmentation workflow that will produce two point clouds
suitable for left ventricle heart model fitting.

Task 1

Task one is to investigate the DICOM headers from a set of tagged MR images stored using the DICOM standard. It
is quite common to see the DICOM standard used interchangeably with the DICOM image format it is important to
remember that the DICOM standard is not only for the storing of images. We will use the MAP Client application and
load the ‘DTP Segmentation Task 1’ workflow, with the workflow loaded you should see something like Fig. 2.2.

Fig. 2.2: Task 1 workflow

In this workflow there are three steps, the first step is the image source step from which we will load the DICOM
images. The second step is the DICOM header query step which will be used to query tags from the DICOM image.
The third stick is a simple Python dict serialisation step so that we may store queries for future reference.

When we execute this workflow we are presented with Fig. 2.3 an interface for querying DICOM headers.

2.1. Computational Physiology - Segmentation 9
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Fig. 2.3: DICOM header query interface

In Fig. 2.3 we can see a number of the GUI elements. On the left of the screen [1] we can see the DICOM image
that we have chosen to query and two combo boxes below from which we can select one to perform a query the
identified tag. The query button [2] when clicked will query the selected DICOM image with the header tag from the
last activated combo box. The results of the query will appear on the right-hand side [3]. On the right-hand side we
have four text boxes that will be populated with the result of our query. The element name is related to the DICOM
keyword but it is not an exact match, the element representation is defined by the standard and is used to determine
the format of the element value. The element value is the actual value of tag queried and the element multiplicity is
the number of values in the value element usually the element multiplicity is one. When the store button [4] is clicked
the result of the query edit to the saved queries table [5], Rows in this table maybe deleted by selecting the row to be
deleted with the mouse and clicking the remove button. When the Done button [6] is clicked the workflow will finish
and return to the workflow edit screen.

The DICOM standard is a rather large and ungainly document freely available on the web, of interest to us here is
part three of the standard dealing with Information Object Definitions and part six of the standard dealing with the
Data Dictionary in particular table 6-1 which relates Tags, Names, Keywords, Element Representation and Element
Multiplicity. If you take a look at table 6–1 you will see that it is it defines a great number of terms and in any given
DICOM file most of these terms will not be defined. What is of interest here though are the tags relating to the image
position in relation to the patient, position of the patient, the pixel spacing, the size of the image and the image data
itself. It is the values taken from these tags that will enable us to correctly orient the images of the patient when we
come to segment the left ventricle in task two. Also available are some data regarding the actual patient and study.

To finish this task, see if you can locate the following information:

1. What is the age of the patient?

2. What is the patient position?

3. Which manufacturer built the equipment?

4. In pixel spacing, what does DS in Element representation signify?

10 Chapter 2. Clinical Workflows
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Task 2

Task two is to segment the left ventricle of the heart. Using the MAP Client application again, load the ‘DTP Segmen-
tation Task 2’ workflow. In this workflow we see five steps there are two image source steps, the heart segmentation
step and two point cloud serialisation steps. In this workflow we have two image source steps one for the long axis
images and another for the short axis images. We will also differentiate between the endocardial surface and the
epicardial surface of the heart which will result in two separate point clouds.

When we execute this workflow we are presented with Fig. 2.4.

Fig. 2.4: Heart segmentation interface initial state

In Fig. 2.4 we can see on the left a toolbox that allows us to change the state of this segmentation tool, on the right
hand side we can see a three-dimensional view of the two sets of DICOM images. To create this view we have used
the

• Pixel spacing

• Image orientation patient

• Image position patient

• Rows

• Columns

information from the DICOM header. This has placed each image plane in the machine or magnet coordinate system.
In the images we are using you will see lines across the image picture, this comes from the saturated MR signals so
that we can track myocardial motion. In the images that we see we have straight saturated bands indicating that these
are the reference images.

2.1. Computational Physiology - Segmentation 11
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From the view toolbox on the left-hand side we can show the image planes and from the file for box we can load and
save our progress. The done button is also in the file toolbox for when we are finished segmenting.

Using the view toolbox first hide all the image planes and then make the 13th short axis image plane visible. You
should now be looking at something very similar to Fig. 2.5.

Fig. 2.5: View of the thirteenth short axis image plane

See the 3D View Help for help on manipulating the view. Move the image plane to a more suitable view for segmenta-
tion. We wish to segment both the endocardial and epicardial surfaces of the left ventricle. In the segmentation toolbox
we can see which surface of the heart we are set up to segment. In this view the control key is used as a modifier for
the left mouse button to add segmentation points to the scene. With the left mouse button held down we can drag the
segmentation points to the desired location. We can also click on existing segmentation points to adjust their position
at a later time. Segmentation points coloured red will be put into the endocardial set of points, segmentation points
coloured green will be put into the epicardial set of points. Use the heart surface combo box in the segmentation
toolbox to change the current point set.

Segmenting this image should result in Fig. 2.6.

Continue segmenting the left ventricle using the long axis images to check for consistency. The end result should look
like Fig. 2.7.

Using the save button from the file toolbox save your progress and click the done button to write the two point clouds
to disk.

Task 3

In this task we will use image processing techniques such as edge detection and edge erosion to automatically segment
regions of interest. It is often necessary to correct this type of segmentation due to errors in the edge detection or edge

12 Chapter 2. Clinical Workflows
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Fig. 2.6: View of the segmented thirteenth short axis image plane

errosion process.

Task 4

In this task we want to transform the data created in tasks 2 and 3 from machine coordinates to heart or model
coordinates. Open the MAP Client workflow ‘DTP Segmentation Task 4’ and execute it. You should see the image
planes as before. In this task we need to define the heart coordinate system so that we may contstruct the transformation
from machine coordinates to heart coordinates. We can do this by selecting three landmark points; the Base point, the
Apex point, and the RV point. This will define our heart coordinate system.

From the transform toolbox we can set the current point we are positioning. Starting with the apex point find the
location at the lower pointed end of the heart which defines the bottom of the left ventricle volume. This can be seen
the clearest on the 3rd short axis image plane, Fig. 2.8 shows the apex point.

Make only the 13th image plane visible, on this image plane place the landmarks for the base point and the RV point.
The base point is the centre of mass of the left ventricle and the RV point is the centre of mass of the right ventricle.
See Fig. 2.9 for an example of these locations.

With these three landmarks set we can determine the heart coordinate system. The origin of this system is one third of
the way down the base to apex line. The X axis for the system is increasing from the base point to the apex point the,
Y axis is increasing from the base point to the RV point and the cross product of these two vectors defines the Z axis.
We make this coordinate system orthogonal by projecting the RV-base line onto the base-apex line.

In Fig. 2.10 we can see an axes glyph to represent the heart coordinate system. This glyph should be consistent with
the definition from the previous paragraph.

2.1. Computational Physiology - Segmentation 13
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Fig. 2.7: View of the segmented left ventricle

From the file toolbox use the save button to save the location of these points then click the done button to complete
this workflow.

Finish

To compete this tutorial we shall put together a complete workflow that will start from DICOM images and result in
segmented points of the left ventricle in model coordinates.

3D-View Help

The section describes how you can control the three-dimensional view. The three-dimensional view can be manipu-
lated with the mouse and some modifier keys. The following sections describe the effect of the different mouse buttons
and modifier keys on manipulating the view.

Left Mouse Button

If you can imagine a sphere around the scene and when you click that you’re placing a point on the sphere so that
when you drag the mouse it as if you are pulling the sphere around buy a piece of string attached to that point. This
means that when the whole scene is visible and we click on the edge of the sphere containing the scene we should be
able to achieve a pure roll movement of the scene.

By default there are no modify buttons used in this mode, however modifier key functionality is often added to suit a
particular application.

14 Chapter 2. Clinical Workflows
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Fig. 2.8: Apex point position in the left ventricle

Middle Mouse Button

The middle mouse button can be used to pan the scene. Panning the scene results in a translation from the current
viewpoint. By default there are no modified buttons used in this mode.

Right Mouse Button

The right mouse button is used for zooming. The zoom applied is what is known as a fly-by-zoom where it appears as
if the viewer is walking towards or away from the scene. Clicking and dragging down the screen will make it appear
as if you are walking away from the scene and clicking and dragging up the screen will make it appear as if you are
walking towards the scene. Using the shift key modifier we can change the type zoom. The shift key changes the zoom
to a telephoto lens type of zoom in this mode it is as if the viewer is standing still and using the zoom on a camera or
pair of binoculars to change the view.

Computational Physiology - Model Construction

Contents:

Model Construction

Model construction consists of:

2.2. Computational Physiology - Model Construction 15
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Fig. 2.9: Placement of the base point and RV point

1. Mesh Creation: creating a finite element mesh with a topology and interpolation suited to describing the body
of interest to the level of detail required.

2. Geometric Fitting: customising the geometry of the mesh to be physically realistic, or tailored to an individual.

3. Material Field Definition: describing and fitting additional spatially-varying fields which affect behaviour of the
body e.g. material properties such as fibre orientations for anisotropic materials.

This tutorial currently concentrates on geometric fitting, but gives overviews of the other topics. It uses the breast
surface as the model for fitting, which is appropriate as customising breast models to individuals is needed to simulate
deformation with change in pose, and this in turn helps co-locate regions of possible cancerous tissue from multiple
medical images each made with different imaging devices which necessarily use different body poses.

Mesh Creation

We are concerned with constructing models consisting of ‘finite elements’ – simple shapes such as triangles, squares,
cubes etc. – which join together to form a ‘mesh’ which covers the body and describes its topology. Over the elements
of the mesh we interpolate coordinates (and eventually other fields of interest) to give the model its 3-D shape and
location. Usually mesh creation involves creating the elements and specifying at least initial coordinates for the model.

Common methods for creating the finite element mesh include:

1. Automatic mesh generation to boundaries described by segmented edges, point clouds or CAD models. Auto-
mated algorithms are usually limited to creating triangle (in 2-D) or tetrahedron (3-D) elements.

2. Generating part or all the topology from simple, standard shapes such as plates, blocks and tubes, then relying
on fitting to the geometry. The models used in the geometric fitting steps below were all generated from a plate
topology and the tutorial involves fitting their geometry.

16 Chapter 2. Clinical Workflows
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Fig. 2.10: Axes glyph representing the heart coordinate system

3. Manually building elements by selecting/creating corner points (‘nodes’) in the correct order. To ease creating a
valid model, tools can assist by locking on to points from a surface or point cloud segmented from real medical
images.

Surface models can be automatically extruded to 3-D models (triangles become wedges, squares become cubes).
Also, different, higher-order basis functions can be used over the same topology to give more degrees of freedom
in the model. This is particularly important for studying the human body as it contains few straight lines. In many
models of body parts we employ C1-continuous cubic Hermite basis (interpolation) functions to model their inherent
smoothness, and the following breast fitting examples demonstrate this. There is a downside to using Hermite bases:
very careful adjustments are needed to properly connect the mesh in areas where the topology is non-trivial, such as
where rounded bodies are closed (top of head, apex of heart), bifurcations (between fingers, legs), and where mesh
density needs to be increased.

Mesh creation is a very involved topic; one needs to consider favourable alignment of elements with expected material
behaviour, having sufficient density of elements to describe the problem with desired accuracy (the fitting examples
below employ 2 different sized meshes to give some indication of the importance of mesh refinement). In contrast,
one also wishes to minimise the model size (measured by total number of degrees of freedom) to reduce computation
time.

Task 0: Visualising Model Construction

We will jump ahead to look at an example from the visualisation course as it’s very illustrative of the process of
building a model out of simple shapes. Open the DTP-Visualisation-Task1 workflow and execute it. Fig. 2.11 shows a
time sequence of constructing a heart model from this example which you will be able to view interactively.

This example opens up a SimpleViz viewer for a model that shows stages in constructing a heart model. At the left of

2.2. Computational Physiology - Model Construction 17
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Fig. 2.11: Heart mesh construction stages: a single template element; multiple disconnected elements; elements
merged into a connected mesh; mesh geometry gradually warped into the shape of the heart, closing up the sides and
apex.

the window is a toolbox; switch to the ‘time’ page of the tool box and drag the time slider between 0 and 1. Rotate,
pan and zoom into the view with the mouse as per the description for the Smoothfit Tool, below.

In most of the model the initially cube-shaped elements are stretched, compressed or distorted, but they keep their
essential cube or hexahedral topology. However, at the apex (bottom of the heart) the cubes are collapsed into wedge
shapes, which while being permissible is an approach which should be minimised.

Geometric Fitting

The remainder of this tutorial concentrates on directly fitting simple models to data point clouds obtained from an
earlier segmentation or other digitisation step. Other types of fitting not covered include:

• Fitting to modes from a Principal Component Analysis, where the variation in geometry over a population is
reduced to linear combinations of a small number of significant mode shapes (key model poses), and lesser
modes are discarded;

• Host-mesh fitting where the body is embedded in a coarse, smooth host mesh, data is used to morph the host
mesh and the embedded slave mesh is moved with it.

In many cases the above methods are used as a first step to get a close approximation before direct geometric fitting.

Smoothfit Tool

This tutorial uses the Smoothfit MAP client plugin for interactive fitting. The inputs to Smoothfit in a workflow are a
model file and a point cloud file (each currently limited to EX or FieldML formats that can be read by OpenCMISS-
Zinc). The workflow in the MAP client is shown in Fig. 2.12, and requires only the input files to be specified (and
workflow step identifiers to be named):

When the workflow is executed, the smoothfit interface is displayed showing the model as a semi-transparent surface
and the point cloud as a cloud of small crosses. The initial view in Fig. 2.13 shows the interface in its pre-fitting Align
state.

In any of the views you may rotate, pan and zoom the view using the standard controls in the following table, click
View All to recentre the view and click Done to close the workflow step (and save the output model for subsequent
workflow steps):
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Fig. 2.12: Geometric fitting workflow in the MAP client framework.

Fig. 2.13: Interface for aligning the model with the data point cloud.
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Mouse Button Transformation
Left Tumble/Rotate
Middle or Shift+Left Pan/Translate
Right or Ctrl+Left(Mac) Fly Zoom
Shift+Right Camera Zoom

In the Smoothfit user interface you can hover the mouse pointer over most controls to get help – tool tips – which
explain what they do.

Pre-fit: model alignment

The first step in fitting is to scale the model and bring it into alignment with the data point cloud prior to projecting data
points and fitting. The need to align the model well is explained later with the projection step. To perform alignment
you must be on the Align page in the tool bar, switched to by clicking on the Align label.

To align and scale the model, hold down the ‘A’ key as you left, middle and right mouse button drag in the window (or
variant as in the above table): this moves the model relative to the data cloud. Be aware that rotation is a little difficult
and may take practice. Other controls include alignment reset, auto centre (in case the model is very far from the data
points; may need to click View All afterwards) and the Load button which will load a saved alignment. (Note that
the Save button is disabled in the smoothfit configuration for these tutorials so a pre-saved good alignment is always
available for loading.)

Often the shape of the model and point cloud make it pretty clear where to align to. Smoothfit uses manual alignment,
but other tools may make it automatic (based on shape analysis) or semi-automatic (e.g. by identifying 3 or more
points on the data cloud as being key points on the model, and automatically transforming to align with them).

Fit stage 1: projecting points

Once the model and data points are aligned, switch to the fitting page in the tool bar by clicking on the Fit label. These
controls show that fitting has three stages: projecting points onto the mesh, filtering bad data, and performing the fit
with some user parameters.

Fitting is usually a non-linear task: after initial fits, possibly with multiple iterations, you may need to go back and
re-project data points, filter data and re-fit, possibly with different parameters. The trial-and-error nature of fitting,
together with the need for judgement on whether a good fit is achieved, make it less a science and more of a dark art!

The first step in fitting is to project the data points onto the nearest locations on the elements of the aligned model, by
clicking on the Project Points button. In the window you will see projection lines from the data points to the nearest
point on the model as shown in Fig. 2.14. These projection lines, interpreted as fitting errors, are coloured by length
(blue closest, red furthest away), and there is an on-screen display of the current mean and maximum projection error.

The key point is that the projections are what the fitting aims to minimise, and if they don’t agree on where a point on
the mesh should move to, the fit will have problems. It’s good if the projection lines are short and/or near parallel, and
it’s bad if they cross over each other. Two things that help produce good projections are:

1. Good initial alignment of the model. Surfaces should ideally be close to the data points, or at least in a position
to produce near-parallel projections.

2. The model should be smoothly curved, i.e. without excessive surface waviness. To help this we use fitting
parameters which produce smoother results for initial gross fitting, which we intend to re-project onto for sub-
sequent fine fitting.

In the worst cases, projecting distant data points onto a very wavy model, will produce data which is unusable for
fitting.

Note that clicking on the Reset button clears all current projections, and restores all points that have been filtered out
for subsequent projection.

Fit stage 2: filtering data
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Fig. 2.14: Data points projected onto the initial model.

We often find that some of the data points are not providing useful data for the fit, and we will want to filter these out.
The Filter data controls shown in Fig. 2.14 allow us to remove data points according to two algorithms.

The first simply removes the data points whose projections are in the specified top proportion of the maximum error,
0.9 (90%) by default. This is mainly used where the data cloud is noisy or contains some rogue data points which are
best taken out of the solution.

The second filtering tool removes data points whose projections are not normal to the surface. This is only suitable for
use with smooth C1-continuous coordinates (e.g. the Hermite basis meshes used for most of this tutorial) where the
surface normal does not suddenly change on element boundaries in the mesh. Note: It is important that you use this
only after re-projecting data points since after performing the fit the data point projections will no longer be normal
to the surface!

When fitting a surface model to only a subset of the data points, you will need to use the non-normal filter (and
sometimes the top error filter) to eliminate the data points clearly outside of the surface to be fit.

Filtering the data points removes those points from the active set of data points, which gets smaller each time but may
be reset to all data points using the Reset button.

Fit stage 3: performing the fit

With data points projected, and bad data filtered out you are ready to fit by clicking on the Perform Fit button, however
we will usually need to play around with parameters controlling the fit to achieve a good result. Fig. 2.15 shows what
the view looks like after 2 iterations of fitting with a moderate strain penalty to keep the solution smooth.

Fitting may be non-linear so multiple iterations may be needed to converge on a solution. Through the interface one
can either re-click on Perform Fit or increase the maximum number of iterations before fitting; note fitting stops either
when the solution has converged or the maximum iterations is reached. If the intention is to re-project points later, it is
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Fig. 2.15: Display after gross fitting the breast model.

purely up to the user how many iterations to perform before doing this; for typical problems where one wishes to gross
fit first, it’s best to ensure enough iterations have been performed to get the solution close enough for re-projection.

Beware that projections are not recalculated during the fitting: you must manually click on Project Points to do this,
and you will probably want to filter some more points before re-fitting.

Switching back to the Align page clears the fitted solution altogether.

The penalty values allow you to smooth the fit by penalising particular deformations. The strain penalty limits ex-
cessive strain in the model so where there is absent or noisy data, solutions which minimise the deformation from
the initial aligned state are favoured. The edge discontinuity penalty is only useful for non-C1-continuous coordinate
fields such as the final linear mesh example. Penalties always increase the data point projection error (in a least squares
sense, which is the solution method used in the fitting), but generally give a much more attractive result. Penalty values
should be adjusted in orders of magnitude until a likeable result is obtained, then fine-tuned. It is often better to use
stiffer (higher penalty) values for initial iterations (gross fitting) to prevent waviness from developing in the mesh, then
re-projecting and reducing penalties for a final iteration (fine fitting). As for the alignment settings, you can load and
save (if enabled) the fitting options.

Note that Smoothfit does not yet offer a curvature penalty which is one of the most powerful tools for dealing with
noisy or sparse data. Using the strain penalty is the next best thing but isn’t as good at dealing with excessive waviness
in the solution, particularly since higher values capable of helping the waviness may considerably reduce the accuracy
of the fit. This shortcoming will hopefully be rectified in a later version.

Performing the fit can take a few seconds, and Smoothfit will appear to hang when fitting is in progress. Processing
time is longer with more elements, more complex elements, more data points and when applying penalty terms.

The following tutorial tasks each have a workflow associated with them which should be run in the usual way.
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Task 1: Coarse plate model fitted to breast data

Open the DTP-ModelBuilding-Task1 workflow and execute it. The breast data was obtained in ‘prone’ pose (hanging
down) as done in MRI scans; this is also the simplest pose to digitise and fit to. Try manually aligning the surface
with the breast data using the mouse controls described earlier (hold down ‘A’ key and the left, middle or right mouse
button and drag to rotate, pan or scale the model). Project points and attempt to fit without any smoothing parameters.
It takes several seconds to perform the fit: be patient! Try multiple fit iterations until the solution is stable. Re-project
and try again.

The result without smoothing even for this example with a coarse mesh and a relatively large number of high quality
data points is quite wavy, particularly around the edges. It also has some unusual depressions about the front of the
breasts which is not really representative of the data cloud in general.

For a second exercise we’ll use a set sequence to obtain a good fit:

1. Switch to the Align page to reset the fit, click on ‘Load’ to load a good alignment.

2. Switch to the Fit page, project points and click on ‘Remove non-normal’.

3. Click ‘Load’ to load a moderate strain penalty of 0.001 and perform the fit 2 times to get fairly close to the data
points.

4. Re-project the data points and click on ‘Remove non-normal’. (This is the state shown in Fig. 2.15.)

5. Lower the strain penalty to 0.0001 and fit once more. The error bars almost disappear over most of both breasts.

6. Write down the mean and maximum error for comparison later.

While the fit appears to be reasonable over most of the breast area, zoom in close on the tips of the breasts and you
will see that the fit is not quite so good there. This is due to the mesh having too few elements to fit the data. The next
task uses a slightly denser mesh which can achieve a closer fit, however you will need to wait longer for it to solve.

As an extra exercise switch to the Align page to reset the fit, re-project points and fit with a much higher strain penalty
(e.g. 0.01) to see how it limits the possible deformation (after several iterations): this is what is considered a ‘stiff’
model.

Also try fitting with very poor initial alignment to see what happens.

Task 2: Fine plate model fitted to breast data

Open the DTP-ModelBuilding-Task2 workflow and execute it. It has the same data point cloud as the first task, but
has a mesh with more than twice as many elements and approximately twice as many parameters, so it is more able to
attain a close fit with the data, but takes longer to solve.

Try some of the exercises from Task 1 with this model. With more elements the model is more susceptible to wavy
solutions so applying appropriate smoothing penalties is more critical.

When performing the second exercise from Task 1, iterate 3 times with the initial strain penalty of 0.001, then re-
project points and fit with a strain penalty of 0.0001. Note down the mean and and error: the mean should be under
half of the value from Task 1. More importantly, zoom in on the tips of the breasts to see that the fit is much better
there.

Task 3: Coarse breast model fitted to breast data

Open the DTP-ModelBuilding-Task3 workflow and execute it. In this example the initial model is more breast-like in
shape so when well-aligned the amount of fitting needed is reduced. You should be able to fit it with the lower strain
penalty of 0.0001 directly in 2 iterations. Since the initial model is already so close, deformations will not be as great
to get a close fit.
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Task 4: Fine breast model fitted to noisy data

Open the DTP-ModelBuilding-Task4 workflow and execute it. This example uses a fine model with a breast-like shape,
however random offsets up to +/- 5mm have been added to all data points. With a large enough number of data points
the effect of randomness is diminished however in small areas the randomness can introduce waviness to the solution,
so smoothing penalties must be applied.

Try fitting the model without any strain penalty, and fit with several iterations to see the waviness. Reset the fit and try
with the regime from task 1: 2 iters at strain penalty 0.001, re-project, 1 iter at strain penalty 0.0001. The overall result
is a good fit but there is unattractive waviness on the chest area. If a curvature penalty were available, these issues with
noisy data could be better controlled.

Because of the random noise the mean error will never get very low, but the average fit of the breast surface can be a
reasonable ‘best fit’.

Task 5: Fine breast model fitted to sparse, noisy data

Open the DTP-ModelBuilding-Task5 workflow and execute it. This example uses only 10% of the data points from
the previous tasks and adds +/- 3mm error to each point.

Try fitting as before. The effect of sparse data with random noise makes it even harder to obtain a close fit. Using
the successful regime from Task 1 gives a result that is quite wavy after the final less-stiff fitting. Curvature penalties
would greatly assist such models.

Task 6: Bilinear model fitted to point cloud

Open the DTP-ModelBuilding-Task6 workflow and execute it. This example has a bilinear mesh and needs no align-
ment with the data point cloud.

Project points and fit with all smoothing penalties set to zero. Rotate the result to see that it has developed a ‘ridge’
along one side, and the under-constrained corner elements distort unacceptably. Reset the fit (switch to Align and back
to Fit pages), reproject and fit with the ‘edge discontinuity penalty’ set to 1. The result is much smoother. This penalty
discourages solutions with differences in surface normals across edges of the mesh. Since the mesh uses bilinear
interpolation, exact satisfaction of this condition cannot be met, nevertheless it minimises it as much as possible, and
in particular it evens out this discontinuity since it is minimised in a ‘least squares’ sense.

Experiment with a much higher edge discontinuity penalty (e.g. 10 or even 100) and lower (e.g. 0.1) to see how the fit
is affected. Try combining with strain penalty values.

Material Field Fitting

In addition to geometry, bioengineering models often need to include spatially varying data describing the alignment
of tissue microstructures, concentrations of cell types, or other differences in material properties. In heart and skeletal
muscle, fibre orientations must be described over the body to orient their anisotropic material properties. Similarly,
Langer’s lines affect properties of the skin, and collagen orientations within other tissue can affect material behaviour.

Each of these properties can be described by spatially-varying fields which interpolate the property of interest over the
same elements the coordinates are defined on.

This topic is not covered further in this example, but the concepts of creating and fitting such fields are similar to
geometry: one must define the interpolation of the values over the mesh, and fit the field to data obtained from imaging
or other techniques. The difference lies mainly in that the data is not coordinates, but orientations when fitting fibres,
known concentrations at points for input to cell models etc.
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A similar process is often used to obtain solution fields from results. Often the solution technique produces outputs
with high accuracy only at certain points in the model. With the Finite Element Method, for example, stress is of
highest accuracy at the Gauss points, and fitting can be used to give a better idea of these solution field values away
from Gauss points.

DTP-ModelConstruction

Documentation for the Model Construction section of the Computational Physiology module in the MedTech CoRE
DTP.

Computational Physiology - Simulation

This tutorial was created as part of the Computational Physiology module in the MedTech CoRE Doctoral Training
Programme. The tasks presented in this tutorial are designed to make the reader aware of common key skills required
for the application of mathematical models in computational simulation experiments in the context of computational
physioloyg. We will demonstrate these skills across a range of spatial scales and numerical methods.

Contents:

Integrating systems of differential equations

In this tutorial we look into the integration of systems of differential equations, using example models from the domain
of computational physiology. We also examine the the main control parameters that can have a significant impact on
the performance and accuracy of a given method.

• Numerical integrators

– Euler method

– CVODE

Numerical integrators

Euler method

The Euler method to integrate a system of ordinary differential equations is probably the most well known method,
particularly popular given its simplicity. Due to its simplicity it is, however, usually not the most appropriate method
to use when performing simulation experiments with complex models of biological systems. It is, however, a very
useful example to use to demonstrate key concepts that apply to most numerical integration methods.

Given the initial value problem

𝑦′(𝑡) = 𝑓(𝑡, 𝑦(𝑡)), 𝑦(𝑡0) = 𝑦0, (2.1)

we now want to approximate 𝑦(𝑡) over some interval 𝑡0 → 𝑡𝑓𝑖𝑛𝑎𝑙. The Euler method approximates 𝑦(𝑡) by dividing
the interval into a series of steps, of size ℎ, and stepping through the interval. One step of the Euler method from 𝑡𝑛 to
𝑡𝑛+1 = 𝑡𝑛 + ℎ is given by

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑡𝑛, 𝑦𝑛). (2.2)

The value of 𝑦𝑛 is an approximation of the solution of the ODE (2.1) at time 𝑡𝑛: 𝑦𝑛 ≈ 𝑦(𝑡𝑛). The Euler method
proceeds through the interval in constant steps of size ℎ until 𝑡𝑛 = 𝑡𝑓𝑖𝑛𝑎𝑙 and the integration is complete.
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Task 1 - the effect of step size

As you’d imagine, the size of ℎ in the Euler method is crucial to the successful application of the method. For the
successful (although perhaps inaccurate) integration of a typical physiological model (see the Physiome Repository
for a collection of examples), ℎ can be so small that the computational cost of performing the simulation is very high.
In some cases, mathematical models may be unsuitable for integration by Euler method, regardless of how small the
step size is reduced to.

In the follow task, we investigate the effect of altering the size of ℎ on two separate simulation experiments. The first
looks at a simple mathematical model where the experiment could be replicated with pen and paper, while the second
looks into the application of Euler’s method to a biophysical model of cellular electrophysiology.

In this task we use the trivial model:

𝑥(𝑡) = sin(𝑡),

𝑦′(𝑡) = cos(𝑡) with 𝑦(0) = 0.
(2.3)

As you can see from (2.3), if correctly integrated 𝑥(𝑡) and 𝑦(𝑡) should be identical. We now use this model to
demonstrate the effect of step size (ℎ) on simulating this model using Euler integration over the interval 0 → 2𝜋.

1. Run MAP Client, choose File → Open and select HOME/projects/mapclient-workflows/
DTP-Simulation-Task1.

2. This simple workflow should look similar to Fig. 2.16. The workflow is pre-configured so there is no configura-
tion required.

Fig. 2.16: The first Euler example as loaded.

3. Click the Execute button and you should get a widget displayed as per Fig. 2.17.

4. As described in Fig. 2.17, multiple simulations can be performed with varying values for the step size, ℎ. Shown
in Fig. 2.18 you can see that as ℎ reduces in size, the approximation of the model (2.3) by integration using the
Euler method gets more accurate.
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Fig. 2.17: The cool Euler integrator interface. In this simple interface, you will see the standard sine function, 𝑠𝑖𝑛(𝑡),
plotted in the right hand panel. The toolbar under the plot is self-explanatory, but provides access to some nifty
features. At the top of the left hand panel you will see the control to set the Euler step size for this model, ℎ and
also the number of points to be obtained. The Simulate button will execute the Euler integration of the model (2.3)
and plot the result on the plot to the right. This can be repeated with various values of ℎ. The Clear graph button
will, surprisingly, clear the current simulation results from the plot panel. The Done button will drop you back to the
work-flow diagram, where you can get back to the plot by executing the work-flow once more.

5. Now have a play with combining different values for the step size and the number of points to be obtained. See
if you can answer the following.

(a) How small should ℎ be to accurately simulate a sine wave?

(b) What do you think would happen beyond a single cycle?

(c) Given ℎ = 1, do you obtain a more accurate solution with a large number of points or a small number of
points?

CVODE

From the Sundials suite of tools, CVODE is a solver for stiff and nonstiff ordinary differential equation (ODE) systems
(initial value problem) given in explicit form in (2.1) above. CVODE is widely regarded as one of the gold standard
implementations of a robust and flexible numerical integrator. One of the advantages of CVODE over Euler’s method
is that it makes use of adaptive stepping over the interval of integration - rather than taking fixed sized steps through
time, for example, CVODE will determine how quickly things are changing and adjust the size of the step accordingly.

Task 2 - fixed vs adaptive stepping

In this task we examine the limitations and the computational costs associated with a fixed step method (Euler) com-
pared to an adaptive step method (CVODE). Here we continue with our sine integration demonstration model to help
highlight the differences.

1. Run MAP Client, choose File → Open and select HOME/projects/mapclient-workflows/
DTP-Simulation-Task2.
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Fig. 2.18: Simulation results demonstrating the effect of step size, ℎ, on the accuracy of Euler’s method in approxi-
mating the solution of (2.3).

28 Chapter 2. Clinical Workflows



DTP Computational Physiology Documentation, Release 2017.02

2. This simple workflow should look similar to that used in task 1 above (Fig. 2.16). The workflow is pre-
configured so there is no configuration required.

3. Click the Execute button and you should get a widget displayed as per Fig. 2.19.

Fig. 2.19: The user interface in this task is similar to that described in Fig. 2.17, and the common elements behave
the same. In addition there is the ability to choose either the Euler or CVODE numerical integration methods. As
the CVODE method is an adaptive stepping method, the value of ℎ is used to limit the maximum step size that the
algorithm will use, with ℎ = 0 indicating the maximum step size is unlimited.

4. You can now easily see the difference between the two integration methods by directly comparing them, as
shown in Fig. 2.20.

5. Now have a play with step sizes, number of points, and integration methods to explore the features of these two
integration methods and see if you can address these questions.

(a) What is the largest maximum step size you can use with CVODE to accurately simulate a sine wave with
number of points being set to 2?

(b) How small does ℎ need to be to get the same solution with Euler?

(c) Are either of those a useful solution?

(d) What is the minimum number of points required to capture an accurate sine wave?

(e) Can you determine a configuration for Euler and CVODE which demonstrates a cheaper, more accurate,
simulation using CVODE with this model?

Task 3 - error control

In addition to providing adaptive stepping, CVODE is also a very configurable solver. Beyond the maximum step size
explored above, a further control parameter of that is often of interest are the tolerances used to control the accumu-
lation of error in the numerical approximation of the mathematical model. This tolerance specifies how accurate we
require the solution of the integration to be, and the value used can be very specific to the mathematical model being
simulated. In task 2 above, we used a tolerance of 1.0e-7. Depending on the behaviour of your mathematical model,
you may need to tighten (reduce) or loosen (increase) the tolerance values, depending on the specific application the
model is being used for. Here we explore the effect of the tolerance value on the ICC model introduced above.
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Fig. 2.20: Simulation results showing the comparison between the Euler and CVODE integrators.

We use the recent biophysically based mathematical model of unitary potential activity in interstitial cells of Cajal.
The interstitial cells of Cajal (ICC) are the pacemaker cells of the gastrointestinal tract and provide the electrical
stimulus required to activate the contraction of smooth muscle cells nescessary for the correct behaviour of the GI
tract. This particular model was developed by scientists at the Auckland Bioengineering Institute to investigate a
specific hypothesis regarding the biophysical mechanism underlying the pacemaker function of ICCs.

1. Run MAP Client, choose File → Open and select HOME/projects/mapclient-workflows/
DTP-Simulation-Task3.

2. This simple workflow should look similar to that used in task 1 above (Fig. 2.16). The workflow is pre-
configured so there is no configuration required.

3. Click the Execute button and you should get a widget displayed as per Fig. 2.21.

4. You can now investigate the effect of changing the tolerance value and maximum step size on the simulation
result. Not all combinations will successfully complete. Example results are shown in Fig. 2.22.

5. After exploring the effects of the integrator parameters and the simulated model behaviour, see if you can answer
the following questions.

(a) With ℎ = 0.0, how loose can the tolerance be and still get an accurate solution?

(b) How tight can you make the tolerance before the computational cost outweighs any improvement in solu-
tion accuracy?

(c) Is there any value of ℎ that will give an accurate solution for a tolerance of 0.01?

Biological Complexity

Mathematical models are a useful tool for investigating biological systems, but such models only ever approximate the
actual biological system and are tuned to specific applications. Depending on your specific requirements, the inclusion
of more or less biological complexity may be necessary.

Switch to Powerpoint slides :)
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Fig. 2.21: The user interface in this task is similar to that described in Fig. 2.17, and the common elements behave the
same. We now are only using the CVODE integration method so ℎ is the maximum step size with ℎ = 0 indicating an
unlimited step size. The tolerance value for the simulation can also be edited in this interface.

Fig. 2.22: Simulation results for a selection of simulations of the ICC model using various configurations of the
CVODE integratior.
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Multiscale simulation

Task 4 - electrophysiological simulation

In this example we explore the effect of spatial resolution of the numerical method in the simulation of a monodomain
electrophysiology simulation.

1. Run MAP Client, choose File → Open and select HOME/projects/mapclient-workflows/
DTP-Simulation-Task4.

2. This simple workflow should look similar to that used in task 1 above (Fig. 2.16). The workflow is pre-
configured so there is no configuration required.

3. Click the Execute button and you should get a widget displayed as per Fig. 2.23.

Fig. 2.23: The user interface in this task initially shows a “converged” solution on the right. The user is able to set the
discretisation of the finite element mesh using the widgets at the bottom.

4. You can now investigate the effect of changing the spatial resolution. Example results are shown in Fig. 2.24.

5. You need to be careful in your choice of mesh resolution as it can easily take forever to solve :) Have a play and
think about the following questions.

(a) How long are you prepared to wait for a suitable simulation result?

(b) Why do you need a higher mesh resolution in the x-direction than the y-direction to achieve a reasonable
solution?

(c) What is the lowest mesh resolution that gives a reasonable solution compared to the provided converged
solution?

Where do these models come from?

Contents
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Fig. 2.24: Simulation results for a 2x1 mesh.

• Where do these models come from?

– Task 5: explore CellML using OpenCOR

– Task 6: find the ICC model

– Task 7: the Simulation Experiment Description Markup Language

– Task 8: explore alternate ICC models

In the previous steps in this tutorial, you have explored simulations performed using mathematical models encoded
in the CellML format. CellML provides a powerful technology to encode these models in a modular and reusable
manner which is easily exchangable between tools.

Task 5: explore CellML using OpenCOR

In this task, we switch from MAP Client to OpenCOR. The first step is to get some familarity with using OpenCOR
to create models and execute simulations. This can be achieved by working through Create and run a simple CellML
model: editing and simulation.

Did you notice that link at the end of that section? With a single click you are able to launch the Van der Pol oscillator
in OpenCOR and immediately simulate and interact with the model.

1. How cool is that?

Task 6: find the ICC model

As you will have seen, using the model repository and OpenCOR it is usually easy to find useful models and explore
them as an aid to understanding some aspect of the model or system represented by the model.

1. Take a look at Open an existing CellML file from a local directory or the Physiome Model Repository to learn
another way to find models in the repository and load it into OpenCOR.
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2. Can you find the ICC model from Task 3 in the repository? Load the ICC model into OpenCOR and see if you
can reproduce the simulation behaviours you observed when exploring the simulation settings in Task 3 using
the MAP Client.

3. Pretty cool that these two different tools can access the same model description and (hopefully) get the same
results, right?!

Task 7: the Simulation Experiment Description Markup Language

Once you are able to reproduce the simulations and plots from Task 3, it would be good to save the configuration of
the simulation so that you are able to easily re-run the simulation experiment in a manner similar to that Van der Pol
oscillator link above.

1. See SED-ML, functional curation and Web Lab to learn how to achieve this.

2. Try and export a SED-ML document which reproduces the ICC simulation result you observed back in Task 3
(preferably a working instance, but getting the same errors is also verification!).

3. Share the SED-ML document with a fellow student and see if they are able to get the same result.

Task 8: explore alternate ICC models

One benefit of computational physiology is that it makes it easy to explore and compare different hypotheses. The
ICC model introduced in Task 3 is a model that captures one representation of the ICC electrophysiology, but there
are others. To finsh off this part of the module, take a look through the repository to explore some of the other ICC
models that are available. And since the ICC cells are primarily driving the contraction of the smooth muscle cells in
the GI system, you might want to see if you can discover any smooth muscle cell models that might be relevant to the
GI system.

Create and run a simple CellML model: editing and simulation

In this example we create a simple CellML model and run it. The model is the Van der Pol oscillator1 defined by the
second order equation

𝑑2𝑥

𝑑𝑡2
− 𝜇

(︀
1 − 𝑥2

)︀ dx
dt

+ 𝑥 = 0

with initial conditions 𝑥 = −2; dx
dt = 0. The parameter 𝜇 controls the magnitude of the damping term. To create a

CellML model we convert this to two first order equations2 by defining the velocity dx
dt as a new variable 𝑦:

dx
dt

= 𝑦 (2.4)

dy
dt

= 𝜇
(︀
1 − 𝑥2

)︀
𝑦 − 𝑥 (2.5)

The initial conditions are now 𝑥 = −2; 𝑦 = 0.

With the central pane in Editing mode (e.g. CellML Text view), create a new CellML file: File → New → CellML File
and then type in the following lines of code after deleting the three lines that indicate where the code should go:

1 http://en.wikipedia.org/wiki/Van_der_Pol_oscillator
2 Equations (2.4) and (2.5) are equations that are implemented directly in OpenCOR.
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def model van_der_pol_model as
def comp main as

var t: dimensionless {init: 0};
var x: dimensionless {init: -2};
var y: dimensionless {init: 0};
var mu: dimensionless {init: 1};
// These are the ODEs
ode(x,t)=y;
ode(y,t)=mu*(1{dimensionless}-sqr(x))*y-x;

enddef;
enddef;

Things to note3 are:

1. the closing semicolon at the end of each line (apart from the first two def statements that are opening a CellML
construct);

2. the need to indicate dimensions for each variable and constant (all dimensionless in this example – but more on
dimensions later);

3. the use of ode(x,t) to indicate a first order4 ODE in x and t

4. the use of the squaring function sqr(x) for 𝑥2, and

5. the use of ‘//’ to indicate a comment.

A partial list of mathematical functions available for OpenCOR is:

𝑥2 sqr(x)
√
𝑥 sqrt(x) ln𝑥 ln(x) log10 𝑥 log(x) 𝑒𝑥 exp(x) 𝑥𝑎 pow(x,a)

sin𝑥 sin(x) cos𝑥 cos(x) tan𝑥 tan(x) csc𝑥 csc(x) sec𝑥 sec(x) cot𝑥 cot(x)
sin−1 𝑥 asin(x) cos−1 𝑥 acos(x) tan−1 𝑥 atan(x) csc−1 𝑥 acsc(x) sec−1 𝑥 asec(x) cot−1 𝑥 acot(x)
sinh𝑥 sinh(x) cosh𝑥 cosh(x) tanh𝑥 tanh(x) csch𝑥 csch(x) sech𝑥 sech(x) coth𝑥 coth(x)
sinh−1 𝑥 as-

inh(x)
cosh−1 𝑥 acosh(x) tanh−1 𝑥 atanh(x) csch−1 𝑥 ac-

sch(x)
sech−1 𝑥 asech(x) coth−1 𝑥 acoth(x)

Table 1. Partial list of mathematical functions available for coding in OpenCOR.

Positioning the cursor over either of the ODEs renders the maths in standard form above the code as shown in Fig.
2.25.

Note that CellML is a declarative language5 (unlike say C, Fortran or Matlab, which are procedural languages) and
therefore the order of statements does not affect the solution. For example, the order of the ODEs could equally well
be

ode(y,t)=mu*(1{dimensionless}-sqr(x))*y-x;
ode(x,t)=y;

The significance of this will become apparent later when we import several CellML models to create a composite
model.

Now save the code to a local folder using Save under the File menu (File → Save) (or ‘CTRL-S’) and choosing .cellml
as the file format6. With the CellML model saved various views, accessed via the tabs on the right hand edge of the
window, become available. One is the CellML Text view (the view used to enter the code above); another is the Raw
CellML view that displays the way the model is stored and is intentionally verbose to ensure that the meaning is always
unambiguous (note that positioning the cursor over part of the code shows the maths in this view also); and another

3 For more on the CellML Text view see http://opencor.ws/user/plugins/editing/CellMLTextView.html.
4 Note that a more elaborated version of this is ode(x, t, 1{dimensionless}) and a 2nd order ODE can be specified as ode(x, t,

2{dimensionless}). 1st order is assumed as the default.
5 Note also that the mathematical expressions in CellML are based on MathML – see http://www.w3.org/Math/
6 Note that .cellml is not strictly required but is best practice.
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Fig. 2.25: (a) Positioning the cursor over an equation and clicking (shown by the highlighted line) renders the maths.
(b) Once the model has been successfully saved, the CellML Text view tab becomes white rather than grey. The right
hand tabs provide different views of the CellML code.

is the Raw view. Notice that ‘CTRL-T’ in the Raw CellML view performs validation tests on the CellML model. The
CellML Text view provides a much more convenient format for entering and editing the CellML model.

With the equations and initial conditions defined, we are ready to run the model. To do this, click on the Simulation
tab on the left hand edge of the window. You will see three main areas - at the left hand side of the window are the
Simulation, Solvers, Graphs and Parameters panels, which are explained below. At the right hand side is the graphical
output window, and running along the bottom of the window is a status area, where status messages are displayed.

Simulation Panel

This area is used to set up the simulation settings.

• Starting point - the value of the variable of integration (often time) at which the simulation will begin. Leave
this at 0.

• Ending point - the point at which the simulation will end. Set to 100.

• Point interval - the interval between data points on the variable of integration. Set to 0.1.

Just above the Simulation panel are controls for running the simulation. These are:

Run ( ), Pause ( ), Reset parameters ( ), Clear simulation data ( ), Interval delay ( ),

Add( )/Subtract( ) graphical output windows and Output solution to a CSV file ( ).

For this model, we suggest that you create three graphical output windows using the + button.

Solvers Panel

This area is used to configure the solver that will run the simulation.

• Name - this is used to set the solver algorithm. It will be set by default to be the most appropriate solver for
the equations you are solving. OpenCOR allows you to change this to another solver appropriate to the type
of equations you are solving if you choose to. For example, CVODE for ODE (ordinary differential equation)
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problems, IDA for DAE (differential algebraic equation) problems, KINSOL for NLA (non-linear algebraic)
problems7.

• Other parameters for the chosen solver – e.g. Maximum step, Maximum number of steps, and Tolerance settings
for CVODE and IDA. For more information on the solver parameters, please refer to the documentation for the
particular solver.

Note: these can all be left at their default values for our simple demo problem8.

Graphs Panel

This shows what parameters are being plotted once these have been defined in the Parameters panel. These can be
selected/deselected by clicking in the box next to a parameter.

Parameters Panel

This panel lists all the model parameters, and allows you to select one or more to plot against the variable of inte-
gration or another parameter in the graphical output windows. OpenCOR supports graphing of any parameter against
any other. All variables from the model are listed here, arranged by the components in which they appear, and in
alphabetical order. Parameters are displayed with their variable name, their value, and their units. The icons alongside
them have the following meanings:

Editable constant Editable state variable

Computed constant Rate variable

Variable of integration Algebraic quantity

Right clicking on a parameter provides the options for displaying that parameter in the currently selected graphical
output window. With the cursor highlighting the top graphical output window (a blue line appears next to it), select
x then Plot Against Variable of Integration – in this case t - in order to plot x(t). Now move the cursor to the second
graphical output window and select y then t to plot y(t). Finally select the bottom graphical output window, select y
and select Plot Against then Main then x to plot y(x).

Now click on the Run control. You will see a progress bar running along the bottom of the status window. Status
messages about the successful simulation, including the time taken, are displayed in the bottom panel. This can be
hidden by dragging down on the bar just above the panel. Fig. 2.26 shows the results. Use the interval delay wheel
to slow down the plotting if you want to watch the solution evolve. You can also pause the simulation at any time by
clicking on the Run control and if you change a parameter during the pause, the simulation will continue (when you
click the Run control button again) with the new parameter.

Note that the values shown for the various parameters are the values they have at the end of the solution run. To restore

these to their initial values, use the Reset parameters ( ) button. To clear the graphical output traces, click on the

Clear simulation data ( ) button.

The top two graphical output panels are showing the time-dependent solution of the x and y variables. The bottom
panel shows how y varies as a function of x. This is called the solution in state space and it is often useful to analyse
the state space solution to capture the key characteristics of the equations being solved.

To obtain numerical values for all variables (i.e. x(t) and y(t)), click on the CSV file button ( ). You will be asked
to enter a filename and type (use .csv). Opening this file (e.g. with Microsoft Excel) provides access to the numerical
values. Other output types (e.g. BiosignalML) will be available in future versions of OpenCOR.

7 Other solvers include forward Euler, Heun and Runga-Kutta solvers (RK2 and RK4).
8 Note that a model that requires a stimulus protocol should have the maximum step value of the CVODE solver set to the length of the stimulus.
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Fig. 2.26: Graphical output from OpenCOR. The top window is x(t), the middle is y(t) and the bottom is y(x). The
Graphs panel shows that y(x) is being plotted on the graph output window highlighted by the LH blue line. The
window at the very bottom provides runtime information on the type of equation being solved and the simulation time
(2ms in this case). The computed variables shown in the left hand panel are at the values they have at the end of the
simulation.

38 Chapter 2. Clinical Workflows



DTP Computational Physiology Documentation, Release 2017.02

You can move the graphical output traces around with ‘left click and drag’ and you can change the horizontal or
vertical scale with ‘right click and drag’. Holding the SHIFT key down while clicking on a graphical output panel
allows you to interrogate the solution at any point. Right clicking on a panel provides zoom facilities.

Note: The simulation described above can also be loaded and run directly in OpenCOR using this link.

The various plugins used by OpenCOR can be viewed under the Tools menu. A French language version of OpenCOR
is also available under the Tools menu. An option under the File menu allows a file to be locked (also ‘CTRL-L’). To
indicate that the file is locked, the background colour switches to pink in the CellML Text and Raw CellML views and
a lock symbol appears on the filename tab. Note that OpenCOR text is case sensitive.

Open an existing CellML file from a local directory or the Physiome Model Repository

Go to the File menu and select Open... (File → Open). Browse to the folder that contains your existing models and
select one. Note that this brings up a new tabbed window and you can have any number of CellML models open at the

same time in order to quickly move between them. A model can be removed from this list by clicking on next to
the CellML model name.

You can also access models from the left hand panel in Fig. 1.1(a). If this panel is not currently visible, use ‘CTRL-
spacebar’ to make it reappear. Models can then be accessed from any one of the three subdivisions of this panel –
File Browser, Physiome Model Repository or File Organiser. For a file under File Browser or File Organiser, either
double-click it or ‘drag&drop’ it over the central workspace to open that model. Clicking on a model in the Physiome
Model Repository (PMR) (e.g. Chen, Popel, 2007) opens a new browser window with that model (PMR is covered in
more detail in Section 13). You can either load this model directly into OpenCOR or create an identical copy (clone)
of the model in your local directory. Note that PMR contains workspaces and exposures. Workspaces are online
environments for the collaborative development of models (e.g. by geographically dispersed groups) and can have
password protected access. Exposures are workspaces that are exposed for public view and mostly contain models
from peer-reviewed journal publications. There are about 600 exposures based on journal papers and covering many
areas of cell processes and other ODE/algebraic models, but these are currently being supplemented with reusable
protein-based models – see discussion in a Section 13.

To load a model directly into OpenCOR, click on the right-most of the two buttons in Fig. 2.27 - this lists the CellML
models in that exposure - and then click on the model you want. Clicking on the left hand button copies the PMR
workspace to a local directory that you specify. This is useful if you want to use that model as a template for a new
one you are creating.

In the PMR window (Fig. 2.27) the buttons on the right-hand side [1] lists all the CellML files for this model. Clicking
on one of those [2] uploads the model into OpenCOR. The left-hand buttons [3] copies the PMR workspace to a local
directory.

SED-ML, functional curation and Web Lab

In the same way that CellML models can be defined unambiguously, and shared easily, in a machine- readable format,
there is a need to do the same thing with ‘protocols’ - i.e. to define what you have to do to replicate/simulate an experi-
ment, and to analyse the results. An XML standard for this called SED-ML1 is being developed by the CellML/SBML
community and preliminary support for SED-ML has been implemented in OpenCOR in order to allow precise and
reproducible control over the OpenCOR simulation and graphical output (e.g., see Fig. 3.22).

1 The ‘Simulation Experiment Description Markup Language’: sed-ml.org
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Fig. 2.27: The Physiome Model Repository (PMR) window listing all PMR models. These can be opened from within
OpenCOR using the two buttons to the right of a model, as explained below.
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The current snapshot release (2016-02-27) of OpenCOR supports exporting the Simulation view configuration to a
SED-ML file, which can then be read back into OpenCOR to reproduce a given simulation experiment, illustrated in
Fig. 2.28.

Fig. 2.28: Once you are happy with the configuration of the Simulation view in OpenCOR, clicking the SED-ML
button (highlighted) will prompt for a file to save the SED-ML document to. This document can be loaded back into
OpenCOR to reproduce the simulation, or shared with collaborators so they can reproduce the simulation.

Support for SED-ML will also facilitate the curation of models according to their functional behaviour under a range of
experimental scenarios. The key idea behind functional curation is that, when mathematical and computational models
are being developed, a primary goal should be the continuous comparison of those models against experimental data.
When computational models are being re-used in new studies, it is similarly important to check that they behave
appropriately in the new situation to which you’re applying them. To achieve this goal, a pre-requisite is to be able to
replicate in-silico precisely the same protocols used in an experiment of interest. A language for describing rich ‘virtual
experiment’ protocols and software for running these on compatible models is being developed in the Computational
Biology Group at Oxford University2. An online system called Web Lab3 is also being developed that supports
definition of experimental protocols for cardiac electrophysiology, and allows any CellML model to be tested under
these protocols [CJ15]. This enables comparison of the behaviours of cellular models under different experimental
protocols: both to characterise a model’s behaviour, and comparing hypotheses by seeing how different models react
under the same protocol (Fig. 2.29 adapted from [CJ15]).

The Web Lab website provides tools for comparing how two different cardiac electrophysiology models behave under
the same experimental protocols. Note that Web Lab demonstration for CellML models of cardiac electrophysiology
is a prototype for a more general approach to defining simulation protocols for all CellML models.

2 travis.cs.ox.ac.uk/FunctionalCuration/about.html This initiative is led by Jonathan Cooper and Gary Mirams.
3 travis.cs.ox.ac.uk/FunctionalCuration.
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Fig. 2.29: A schematic of the way we organise model and protocol descriptions. Web Lab provides an interface to a
Model/Protocol Simulator, storing and displaying the results for cardiac electrophysiology models.

TL;DR

The quick highlights in this tutorial.

1. Introduce the concept of numerical integration of systems of differential equations.

(a) Two specific algorithms presented: Euler’s method and CVODE.

(b) Investigate the impact of choosing the correct algorithm control parameters (Task 1 - the effect of step size).

(c) Observe the limitations and the computational cost associated with numerical method choices (Task 2 -
fixed vs adaptive stepping) and algorithm parameterisation (Task 3 - error control).

2. How much biological detial is too much?

3. Integrating cellular models into organ models.

4. Exploring models from the repository.

Computational Physiology - Visualisation

Contents:

Visualisation

This tutorial was created as part of the Computational Physiology module in the MedTech CoRE Doctoral Training
Programme. The tasks presented in this tutorial are designed to make the reader aware of key visualisation skills
used in the context of computational physiology. We will demonstrate these skills across a range of spatial scales and
visualisation techniques.
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Overview

Models, simulation results and image data in Computational Physiology are often three-dimensional, and may vary
with time or other material or input parameters. We use visualisation to convert this raw modelling data into visual
representations that illustrate the complexities of underlying biophysical behaviour in a manner that is consumable by
the target audience.

This exploits humans’ astounding visual capabilities, able to perceive three-dimensional objects and their spatial re-
lationships from two-dimensional images of scenes with lighting/depth cues, possibly stereo, particularly when seen
from multiple viewpoints.

Researchers need to perform interactive visualisation, alternately varying what is being spatially visualised and moving
about the scene to view it from different distances and directions, and viewing changes with time. Such interaction is
necessary to discover salient features in the dataset, since they may be deep within a 3-D model and hidden behind
other structures, or happen in an instant of time.

One of the main challenges of visualisation is that typical output media such as documents and computer displays are
inherently two-dimensional. We employ computer graphics rendering to make 2-D images from 3-D scenes, built up
solely from point, line and triangle primitives. Visualisation algorithms are used to covert features of a model which
may be any dimension into these primitives. Computer graphics rendering applies shading (colouring including with
textures/images, lighting, translucency) to draw primitives out of coloured pixels on the output image, and combined
with the ability to vary time and viewpoint (at interactive speeds due to the enormous processing power of graphics
hardware) gives the resulting output depth and communicates temporal changes.

Often the final objective is to output one or more static 2-D images, a movie or increasingly a shareable interactive
3-D visualisation. These outputs are used for papers and theses, presentations and general publicity. It can’t be over-
estimated how important it is to develop these visualisation skills when working in Computational Physiology, and
how effective they are in communicating results and engaging with your audience: pretty pictures sell research.

SimpleViz tool

This tutorial uses the SimpleViz MAP client plugin for interactive visualisation. Each tutorial task uses a simple
workflow consisting of a File Chooser for specifying a loading script (which loads a model and sets up some initial
graphics) which is passed to the SimpleViz step, as shown in Fig. 2.30:

Fig. 2.30: Visualisation workflow using SimpleViz in the MAP client framework.

As the name suggests, SimpleViz presents a simplified interface for performing key aspects of interactive visualisation
including results output. As shown in Fig. 2.31 its interface consists of a large 3-D graphics view and a toolbar with a
series of pages for performing key functions. These are described in the following tutorial tasks, however it is hoped
that many features will be obvious, and you are encouraged to play and have fun.
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Task 1: Viewing

Open the DTP-Visualisation-Task1 workflow and execute it. This loads the heart model construction visualisation in
SimpleViz (from the model construction tutorial) as in Fig. 2.31.

Fig. 2.31: SimpleViz heart model construction visualisation, with view controls.

This is a made-up example for demonstrating how complex models are built out of simple shapes (finite elements), in
this case cubes. Once you play around with it you will see how a good visualisation can explain complex behaviour
with great efficiency.

The example supplies the coordinate locations of 60 elements at 4 times:

1. All elements converged to a single cube (time = 0.0)

2. The elements are exploded into a regular lattice and not connected (time = 0.2)

3. The elements are merged into a block mesh of 10x3x2 elements (time = 0.4). This stage shows that corners,
edges and faces of touching elements have merged (except for those eventually on the right ventricle cavity –
these open up).

4. The block mesh is deformed into the heart model, merging into a ring where ends touch, closing the apex, and
opening the right ventricle (time = 1.0)

At any time switch to the time page and move the time slider to animate the model which smoothly interpolates between
the above times. Note that interpolation between times 0.4 and 1.0 is not appropriate for some outside elements which
get very distorted, but it is good enough for this demonstration. The following section explains how to change your
view of the model which you should be constantly doing when visualising models.

Before proceeding we need to explain some concepts in order to make sense of the following tasks. This model has
a domain consisting of a mesh of 60 cube-shaped elements which are eventually connected along certain faces. Over
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the domain we describe the field ‘coordinates’ which is a function mapping each of the elements’ local ‘xi’ coordinates
to their positions in the 3-D coordinate system; in this case the coordinates are interpolated from coordinates stored
at discrete node points within the model, which can be visualised and labelled as described in task 2. In computa-
tional models there can be any number of fields defined over a domain, representing quantities ranging from material
properties to the results of simulations. A key feature of visualisation is that separate fields can be used to set various
visualisation attributes, including coordinates, colours, orientation and scaling, labels etc. creating an explosion in the
number of permutations of possible graphics that can be displayed.

Manipulating the View

We can manipulate the view with mouse actions: clicking and dragging with the mouse in the graphics window area
allows you to rotate, pan and zoom the view. The following table describes which mouse button controls which
transformation.

Mouse Button Transformation
Left Tumble/Rotate
Middle Pan/Translate
Right Fly Zoom
Shift+Right Camera Zoom

When we transform the view with the mouse you can see the corresponding settings change in SimpleViz’ view page
(see Fig. 2.31). You can also directly enter values into the controls. Regular Fly Zoom moves the eye point closer to
the lookat point. Camera Zoom changes the angle of view but the eye doesn’t move; if you make a very wide angle
of view and then move in close, it is like looking through a very wide angle lens. The Tumble/Rotate control rotates
about an axis in the scene, like pulling on a tangent to a large sphere filling the window. Play with these controls until
they make sense to you. If things start looking too weird, click the ‘View All’ button to restore a normal view.

In real life you can see from in front of your eyes to infinity, albeit not all in focus. In typical 3-D computer graphics
everything is in focus, but you can only see a range of distances in front of your eye in the direction of the ‘lookat
point’: between the near and far clipping plane distances. When you view the scene in perspective mode (the default
in SimpleViz), the part of space you see is called a viewing frustum, which is a pyramid seen from above but with its
top chopped off at the near clipping plane. In perspective mode, closer objects are larger, which matches how we see
the real world. By turning off perspective you get an orthographic or parallel projection where sizes of objects are
unchanged by distance from the eye, like an extreme telephoto lens effect. Fig. 2.32 illustrates the difference between
these two projections, and shows that the near and far clipping planes work the same in both cases. (Note that the
‘camera’ is termed ‘eye’ in this documentation.)

Ideally we want to position the near plane just in front of everything that should be visible and position the far plane
just behind everything that should be visible. The better the job we do of this the better the hidden graphics removal
will work, which is important when making large high-quality, high-resolution images. SimpleViz sets the range more
conservatively than this so that it doesn’t need to change the ranges when objects are rotated out-of-plane. (You will
notice in this example that multiple graphics drawn at the same depth appear to flash as they battle for which is in front
and therefore seen. With lines and surfaces at the same depth the lines look like stitching; under the rendering page is
a perturb lines option which brings the lines nicely in front. Try it out.)

As their names suggest, the clipping planes can also be used to good effect in hiding graphics that are in the way of
what we want to see. Here we will use them to gain an insight into what graphics are actually on the screen.

On the view page, drag the near clipping plane until close parts of the model disappear; when you are close you can
hover over the slider and rotate the mouse wheel which moves it with more precision. Similar clipping occurs if you
zoom in close enough to the model since you can’t see things behind you. The far clipping plane has a similar effect
on the far side of the view.

With the front part of the model being clipped, rotate the view: you will see all the elements are hollow! This reinforces
that only points, lines and triangles (surfaces) are ever drawn in computer graphics. Have a look at the list of graphics
under the graphics page: it consists of lines and surfaces on the edges and faces of 3-D cube elements. You can assure
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Fig. 2.32: Computer graphics perspective and orthographic/parallel projections. Original illustration from Nicolas P.
Rougier, licensed under CC BY 4.0.

yourself that the elements are 3-D by making other graphics such as elements points that are calculated in its interior;
you’ll need to hide the surfaces by un-checking the box next to the surfaces graphics on the list.

For the rest of this task use the viewing controls to look closely at how the bottom of the heart is merged to form an
apex, and generally how the initially cube-shaped elements are distorted to make a physically realistic shape.

Task 2: Graphics and Image Output

In this task we will create basic graphics to visualise a 3-D heart model, and output an image suitable for a publication.
Open the DTP-Visualisation-Task2 workflow and execute it. Fig. 2.33 shows the model visualised how we want at the
end of the task, and shows the graphics page controls in SimpleViz.

The graphics page lists all the individual graphics that make up the visualisation of the model. Each listed graphics
item has a square checkbox that controls whether it is visible or not. The heart model is initially visualised with lines,
surfaces and node points (drawn as spheres).

Graphics Types

Following are all the main graphics types that can be created with SimpleViz:

• Lines: Graphics made from 1-D elements or edges of higher dimensional elements. Drawn by default with line
primitives, extra controls allow them to be shown as scaled cylinders.

• Surfaces: Surface graphics generated from 2-D elements or faces of 3-D elements.

• Points: Visualisations of discrete locations in the model. These are each drawn with the chosen glyph (standard
shapes including point, sphere, arrow, cone etc.) which can be scaled, oriented and labelled by different fields
in the model. Variants include point (a single point, e.g. for drawing the axes glyph at the origin), node points
(points in the model at which parameters are stored for interpolation), data points (an additional set of points
not used for interpolation), and element points (points sampled from the interior of elements, with extra controls
for sampling).
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Fig. 2.33: SimpleViz graphics page showing heart model ready for print output.

• Contours: For 3-D models, produces iso-surfaces at which the specified scalar field equals a chosen value or
values. In 2-D domains, produces iso-lines.

• Streamlines: visualisations of the path of a fluid particle tracking along a stream vector field specified for
the specified length of time. Sampling and line attributes are also settable; different line shapes allow lateral
directions or curl to be visualised.

All graphics share some common attributes, for example the field giving their coordinates, the material chosen to
colour the graphics, and as appropriate, limiting to exterior or particular faces of parent elements. There is also a data
field which is used to colour the graphics by the value of the chosen field, as described later.

Select the surfaces and change the material to ‘blue’. Experiment with different materials, exterior state and face
values for the lines and surfaces.

Point Glyphs and Scaling

Select the node points and change the glyph (e.g. to ‘cube_solid’) and try different values for base size. Glyphs can
be oriented and scaled by fields with the final sizes each given by:

size = base_size + scaling*scale_field

If you want the glyph to be fixed size, give it a base size and either no scale field or zero scaling. If you want the
size to be proportional to a field, give it zero base size, choose a scale field and a scaling value which specifies the
length/diameter/size of the glyph (since they are all unit sized). If you want to visualise a vector, make the base
size ‘0*width*width’ and the scaling ‘scale*0*0’ to ensure the width is fixed and the length is proportional to the
magnitude of the vector.
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Create new element points graphics via the ‘Add...’ pull down menu and change the label field to ‘xi’ to show the
element’s local coordinates at their respective centres. You may need to hide surfaces to see points inside elements.
Change the number of divisions to 2 (interpreted as 2*2*2 in 3-D) and change the mode to ‘cell_corners’. Be aware
that if you label points with the coordinates for this model the values are in a prolate spheroidal coordinate system so
will not match the common x, y, z coordinates.

Data Colouring

Click ‘Done’ and restart Task2. Hide the node points. For the surfaces graphics, choose ‘fibres’ for the ‘data field’ (we
will explain what this field represents later; here we are just treating it as an interesting field to colour graphics by).
Go to the ‘Data Colouring’ page and click ‘Autorange spectrum’, then ‘Add colour bar’ to see the full range of values
of ‘fibres’ over the drawn surfaces. Note that the colour bar is a special point graphics added to the graphics list.

Colouring by a field is a key method for visualising variation of solution values across visible parts of a model. You
are free to arbitrarily set the range of data values mapped to colours. Enter minimum=0, and maximum=2.

Contours

Add contours graphics and choose scale field ‘slice’ and isovalues=0. The slice field is defined as a scalar (single com-
ponent value) given by the plane equation Ax + By + Cz with the right-hand-side given by the isovalues. Experiment
with other fields such as lambda, mu, theta (the prolate coordinates) and different isovalues such as 0.7 (or multiple
comma-separated isovalues) for these fields.

Drawing contours/isosurfaces is one of the key techniques for visualising the interior of a 3-D model. Often there is
a threshold value of a scalar field where interesting or problematic behaviour occurs: where stress exceeds what the
material can handle, or where the electric potential of the heart cells rises to a point where the muscle contracts. In
such cases a single image can often communicate the main features of what is happing at that time.

Always rotate, zoom and pan around to see what you have created.

Tessellation Quality

On the contours graphics, restore the scalar field to ‘slice’ and the isovalues to ‘0’. Set the data field to ‘fibres’. Tick
the wireframe check box to see the outline of the actual triangles being drawn for the contours.

Change to the Rendering page of the tool bar and inspect the Tessellation divisions. The elements making up the
model are divided into linear segments for graphics creation. The Minimum divisions is the number of divisions for a
linear element, and these are multiplied by the Refinement factors for non-linear interpolation and coordinate systems.
Hence in this example the heart elements are divided into 4 segments in each dimension.

Type ‘8’ following by Enter in the Refinement control. You will see that all curved lines and surfaces suddenly look
much smoother. Enter ‘1’ to see how bad linear interpolation looks on these curved elements. Now Enter ‘16’; you
will be asked to confirm this number since the 3-D elements are divided into 16*16*16 small cubes for generation of
the contours, which for 60 elements requires evaluating the scalar field at 0.25 million locations, and more graphics
means it may be considerably slower to generate graphics and even perceptably slower to draw on-screen. Zoom in
and look around this fine visualisation.

The divisions are specified as the product of 3 numbers, one for each element ‘xi’ direction. Since the elements of this
mesh are thinner and more simply described through the xi3 direction, enter 16*16*4 to see an almost identically high
quality result with 1/4 of the calculations.

Tessellation quality is a compromise; use fewer divisions for interactive speed, and raise the number for high quality
image output.
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Streamlines

Normally streamlines are used to visualise fluid flow, however muscle tissue is fibrous and to model its deformation
and electrical conduction requires the orientation of these fibres to be described throughout the domain. The ‘fibres’
field describes the orientation of the muscle fibres, but also the lateral sheet direction and sheet normal. This field is
suitable for visualisation with streamlines.

Hide the contours and create streamlines. Select streamlines vector field ‘fibres’, and set the time length to 100 to
see many fibres drawn as lines. You’re free to seed streamlines from multiple sampling points, but we’ll stick with
the default centre of each element. Now set the bases size to ‘1*0.2’ and the line shape to ‘square extrusion’. Set
the material to ‘silver’. This visualises not only the direction of the muscle fibres, but also the planes of muscle fibre
sheets, which have different material properties to the sheet normals. Zoom in and have a close look at the resulting
graphics.

Printed Output

White or coloured graphics on a black background looks great on-screen but terrible on the printed page, plus it is a
huge waste of ink/toner! On the view page change the background colour to ‘1,1,1’ i.e. white. The problem now is
that the white graphics are invisible over the white background! On the graphics page select the lines graphics and
change the material to ‘black’. Do the same to the point graphics used to show the colour bar, so the labels appear in
black. We now have what we want on the printed page (admittedly in a more sophisticated graphics package we may
want to make the lines thicker, and change the font, however SimpleViz hides these options).

Adjust the window to the size you want, and the orientation of the heart so it looks balanced. From the Output page
of the toolbar, click on ‘Save image...’ and enter a name, say ‘myheart.png’. From outside MAP Client / SimpleViz
browse to the file location and have a look at the final output image, which is ready to put in your publication.

Task 3: Deformation Animation

In this task we read a heart contraction simulation, visualise deformation and strains and output a 3-D animation to the
web. Open the DTP-Visualisation-Task3 workflow and execute it. Fig. 2.34 shows a close up of this model visualising
strain tensors.

This model’s loader script defines a Lagrangian finite strain field using the rate of change of the coordinate field in
deformed versus reference states. Eigenanalysis is performed to get principal strains and their directions, and these are
used to scale and orient mirrored cone glyphs. The above figure shows that the first element points’ cones are oriented
with the first principal strain direction. Not shown in the SimpleViz interface are the mirror and signed scale options
use to scale the cones and point them inwards in compression and outwards in extension. A special spectrum is used
to show extension in blue and compression in red, using the first principal strain as the data field.

[At the end of this task, advanced users may want to look at the loader script to see how the time-varying model is
loaded, how the additional fields are created by expressions, plus how the advanced visualisation options are set up.
This example demonstrates that you don’t need to be stuck looking at the results exported from your solver; additional
fields for visualisation can be created from any mathematical or algorithmic transformation on the exported fields.]

Go to the time page of the toolbar and adjust time to observe the passive inflation and contraction phases of the
deformation (the last phase was not solved and just interpolates back to the start). View the changing strains which
show how the material deforms at those points. Change the glyph for each element points graphics to ‘arrow_solid’
and see how it looks. On the Rendering page change the circle divisions to 4, then 6 and back to 12 to see the effect on
the quality of the arrows; the higher the number, the more time it takes to draw the graphics; this may not affect this
smallish example, but try increasing the number of sampling divisions on all three element points graphics (to 3*3*3
or higher) to see if it has an effect, particularly when animating.
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Fig. 2.34: Visualising strain tensors in the deforming heart.

Making Web Animations

Hide all three element points and view the deformation. Change the surfaces to show all faces, with exterior on. Hide
the lines. Look at how the ventricle twists as it contracts.

Traditionally we’ve produced movies to demonstrate dynamic behaviour, by writing a series of images at different
times and using an external movie-maker tool to combine them into a movie file. However, these only show the results
from a fixed direction or trajectory.

Here we are going to export an animated outside surface of the heart into ‘ThreeJS’ format for viewing in a web app
(using WebGL). On the Output page, click on ‘Save WebGL...’, navigate to the ‘export’ folder as instructed by the
tutor, choose a filename prefix e.g. ‘defheart’ and click ‘Save’.

Now open a FireFox browser (other browsers are not yet properly supported) and load the following file from the
above export folder, specifying the PATH and the inputprefix of your exported model:

file:///PATH/export/sample_export.html?inputprefix=defheart

It should display the model as a slowly deforming heart, which you can view from different directions just as in
SimpleViz. This technology is relatively new and there is still much to be exploited, but it shows one of the ways
visualisations will be shared in the future.

Task 4 Lung Airways Network

In this task we read a model of the network of airways in both left and right lungs. The airways are one dimensional el-
ements, but they have a radius field which is used to give them a three dimensional form. Open the DTP-Visualisation-
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Task4 workflow and execute it; it’s a large model and can take a while to load. Fig. 2.35 shows a close up of this model
at the end of this task.

Fig. 2.35: Close-up of lung airways with spheres plugging gaps.

When initially loaded, the airways are drawn as lines with no indication of how thick they are. On the view page
change the background colour to 1,1,1 and on the graphics page select the lines and change their material to ‘tissue’.
Choose scale field ‘radius’, and set the scaling to ‘2*2’ to use it as a diameter. Change the line shape to ‘circle
extrusion’, and after a pause the true-sized airways are shown. Explore the model up close.

One problem with the model is that each airway is a straight tube, which makes for gaps between them when they
change direction. A ‘cheap trick’ solution is to draw a sphere at every node point. Add node points graphics, set the
material to ‘tissue’, the scale field to ‘radius’, the scaling to ‘2*2*2’, and the glyph to ‘sphere’. That should close the
gaps reasonably well. Sometimes it’s necessary to be dirty to make a clean image!

For a very attractive view of the airways, select the lines graphics and set the data field to ‘radius’. The default range
of the spectrum from 0 to 1 looks much nicer than when it is autoranged.

For any of these models it may be helpful to see where the global x, y, z axes are. Add a new point graphics, set the
material to ‘black’, change the glyph to ‘axes_xyz’ and set the base size to 50. Surprisingly, the origin is quite far from
the model; you may need to zoom out or click on ‘View All’ to see the axes. From the relative size of the axes we can
see that coordinate units are in millimetres.

Task 5 Embedded Airways

In this task we visualise a deforming left lung model (deflating from total lung capacity) with embedded airways.
Open the DTP-Visualisation-Task5 workflow and execute it; it’s a large model and can take a while to load. Fig. 2.36
shows a close up of this model decorated as part of this task.
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Fig. 2.36: Left Lung with embedded airways.
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On loading you will see the airways as gold lines inside a lung volume mesh. The model is time-varying, so play with
the time slider on the Time page to view the deformation (which is not quite as interesting as that of the heart). When
looking at the list of graphics you’ll be surprised to see an empty list! Above the list of graphics is a ‘region chooser’.
This model consists of two separate submodels, one for ‘/AirwaysLeft’ and one for ‘/Left’. Each has its own domains
and fields, plus the graphics used to visualise them.

We now decorate the combined model to match the above image. First, on the view page, set the background colour to
1,1,1. Next, on the graphics page, switch to region ‘/AirwaysLeft’, select the lines and set scale field ‘radius’, scaling
‘2*2’ and shape ‘circle extrusion’. Switch to region ‘/Left’, select lines and change the material to ‘black’. Add
surfaces, make them exterior and choose material ‘trans’, a special semi-transparent material created for this example.

You will find with the fully decorated model that animation with time is much slower, mostly because of the cost of
building the 3-D airways. Reducing the circle divisions on the Rendering page can speed things up a little at some cost
to image quality.

One interesting thing about this visualisation is the fact that the airways move with the deforming lung volume model
because they are embedded at fixed element:xi locations within it. This is a technique for reducing the computation
and storage costs of multi-scale models: time-varying coordinates need not be stored for the fine airways since they
can get them from their host lung model.

A second interesting point is that the translucency effects are imperfect and ‘patchy’. It actually takes some clever
rendering to draw this perfectly, and SimpleViz does not present those options.

There are some other interesting fields in this model. Create contours of z = -100, with data field ‘cmH2O’ a pressure.
You will see nothing until you hide the translucent surfaces. The order of drawing is important for simple translucency,
so recreating the translucent surfaces after the isosurfaces works better. Once you can see the isosurfaces, autorange the
spectrum under the Data Colouring page, and display the colour bar (changing its material to ‘black’ on the graphics
page, under root region ‘/’). It was a surprise to the researcher that this field drops to zero in the centre of the lung,
and may indicate an error. This goes to show how interactive visualisation plays a key role in checking the validity of
computational physiology results.

On the ‘Left’ region you can also create data points with coordinate field ‘stress_coordinates’ and colour them by data
field ‘stressp’. The data points are also embedded in the lungs and field ‘stressp’ varies with time. You may need to
hide other graphics to see these well. Play around with adjusting time and autorange the spectrum at different times in
the Data Colouring page. Data points can be visualised with scaled glyphs just like node points.

Task 6 Image Fields and Texturing

This task demonstrates how images can be used to colour, or texture graphics, and how images can be segmented into
surfaces as contours of the image field. Open the DTP-Visualisation-Task6 workflow and execute it. It may take a
while to load since it contains a stack of images and some of the contours calculations take some time. Fig. 2.37 shows
a view of the model from later in this task. The image data is of the foot, cropped from the NLM Visible Human
Project male dataset.

Initially two perpendicular slices of the 3-D images – contours of x and y – are drawn, plus two contours graphics
segmenting surfaces of the skin and interior red tissue including muscles and larger vessels. An initially hidden
contours graphics shows segmented bone surfaces, but is not so clean and includes a lot of non-bone surfaces.

First hide the last two contours graphics and inspect the images drawn in the image block. Try different values of x
and y contours, for example enter isovalues ‘120, 180’ for the first contours (of x), and ‘120, 180, 240, 300’ for the
second contours (of y). This shows that the entire volume image is present and able to be shown over graphics. Note
you can’t currently set up these graphics via the SimpleViz interface as it doesn’t have the texture coordinates field
setting which tells the graphics which part of the image to draw at primitive vertices.

Restore contours to x=128.5, y=185.5, and then show the last two contours in the graphics list, the muscle and skin
surfaces. To achieve these visualisations the loader script created fields ‘mag_non_muscle’ and ‘blue’ as expressions
on the colour (in red, green, blue or RGB space). You can see that it is very clear on the images where the images are
red and blue, so these work well.
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Fig. 2.37: Segmented skin, muscles and vessels of the foot image.

Now switch to the Rendering page of the toolbar and see that only the minimum divisions, at ‘16*16*16’ are used for
this model. If you were to create new lines graphics you will see that the isosurfaces are calculated over a separate
mesh, sized so that 16 image pixels cross each element. This means that the contours will be as fine as the native
resolution of the images. See the result of setting the minimum divisions to 4, then 8, then 16, then enter 32 and wait
a while for even finer contours to be seen. Hide the skin and any other distracting graphics and look at the muscles.
Transform the view to see them from different angles and up close. Re-display the skin contours, and change their
material to ‘skin_trans’ which is semi-transparent so the muscles can be seen within it.

Zoom right inside this model and change the view angle on the View page of the toolbar to a high value e.g. 90 degrees
or more. Explore around this amazing 3-D world you have created!

Hide all graphics and turn on the 3rd contours in the list, which correspond to bones. With 32 tessellation divisions
they will take a few seconds to be generated. You will see that, indeed, some bones are visible, however there is a
great deal of noise and many other structures are falsely shown. This demonstrates some of the difficulty of automatic
segmentation on real images, and why additional knowledge including models of the shapes and relative sizes of the
parts expected is often needed to extract patient specific models from images.

As an advanced exercise, try tweaking the isovalues for this and other contours to see whether better surfaces can be
created. Using a lower tessellation minimum divisions e.g. 16 (on the Rendering page) while exploring.

Computational Physiology - Complete Workflow

Contents:
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Complete Workflow

This module covers the complete workflow from the acqusition of medical images through to a clinical outcome or
clinical tool.

Overview

At this point we have covered the individual stages that take us from some clinical observation or clinical experiment
through to creating clinical outcomes. We shall now turn to looking at a complete workflow, that is starting from some
clinical data and finishing with a prediction for clinical use.

In this module we will use the musculoskeletal system to illustrate the complete workflow. Firstly we will consider
the partial case of a complete workflow where we will analyse a horses fetlock joint to gain understanding on wear
and abrasion and how this relates to injury. Then we will look at a much more complete workflow, the femur mor-
phometric workflow, which starts from a set of patient specific anatomical feducial markers and ends with the femur
measurements of a specific patient. The measurements taken from the femur may then be used to provide assistance
to a clincian on deciding on a course of action for a positive clinical outcome.

The Musculo-Skeletal System

The musculo-skeletal (MSK) system ... has a great deal importance in the clinical setting. With so many people
suffering from osteoathritis and other musculo-skeletal diseases the impact of reducing patient suffering is huge. From
a computational physiology aspect we are taking patient measurement and constructing a suitable model that can be
used to predict behaviour, for example a wear pattern of a joint acheived through computing joint stress and strain.

MSK Introductory Workflow

Task one is to have a look at a workflow for the analysis of the horse fetlock joint. In this workflow we will take a
set of measurements that will be used to characterise the joint. With this information we will predict the liklehood of
injury and try to determine a training regime that minimises the risk of injury.

In this workflow [shown in Fig. 2.38] there are six steps. It starts with reading in a database of horse fetlock mesh
coordinate frame definitions and the selection of a fetlock mesh. The corresponding coordinate frame definition is
read in for the mesh selected and passed to the ‘Hoof Measurement’ step along with the fetlock mesh itself. The first
three steps in this workflow are non-interactive steps, they are configured proir to executing the workflow. The ‘Hoof
Measurement’ step is an interactive step for making measurements along the sagittal ridge of the fetlock joint.

Fig. 2.39 shows the initial view of the ‘Hoof Measurement’ step. What we see is some controls on the left handside
and on the right a mesh of the fetlock joint cut in half by the segmentation plane. We are going to measure the height
of the sagittal ridge. To do this we must place seven points along the line of ridge at three different segmentation plane
angles. The seven points must define the line forming the base of the plane and the peak of the ridge. The order that
the points are placed on the segmentation plane is not important, however it is important that the segmentation point
used to mark the peak of the ridge is the fourth point counted from the left-hand or right-hand side of the plane. Fig.
2.40 shows seven points placed on the segmentation plane with the plane angle set at zero degrees.

As shown, six points are used to define the base plane of the joint with the innermost segmentation points of the plane
used to mark the start of the rise of the ridge. The middle (or fourth point) is used to mark the peak of the ridge.

For the anaylsis of the ridge we are required to segment the ridge at three different segment plane angles. The angles
that we require are +30 degrees, 0 degrees and -30 degrees. The process for the segmentation at each plane angle is
the same as outlined above.

Once we have completed segmenting the sagittal ridge for the three plane angles we have completed the interactive
part of this workflow. The remaining two steps are the ‘Hoof Point Anaylzer’ step and the ‘Dict Serializer’ step.
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Fig. 2.38: Task 1 workflow horse fetlock characterisation

Fig. 2.39: Initial view of the ‘Hoof measurement’ step
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Fig. 2.40: Segmented ridge of fetlock joint at 0 degrees

The ‘Hoof Point Analyzer’ step takes the segmented data and characterises the hoof throught the height and the angle
of the sagittal ridge. This information is then stored to disk in the ‘Dict Serializer’ step.

At this point the workflow stops but it could carry on to adding the new measurement to a database of such measure-
ments and from there infer from the analysis some risk of injury for the horse. The next workflow in this section will
show a much more comprehensive and complex physiological modelling cycle.

Patient Femur Analysis Workflow

Task two is to execute and follow through a (almost) complete computational physiology cycle. For this task we will
take a set of MR images of the knee joint and some fudicial markers taken from the patient so that we can make a set
of measurements that are consistent across all patients and provide data for a clinician to prepare the best treatment for
the patient.

In Fig. 2.41 we have the workflow for analysing a patient’s femur. It is a very complex workflow and by far the
most advanced that we have seen. We can of course use this workflow to analyse any bone that we have the required
population based principal component model data for. At this time we have this data for all the major bones of the
lower limb, but here we focus on the femur.

This workflow as previously stated is rather complex, it has a number of interactive steps and non-interactive steps.
There are a number of entry points and it is unknown which one you will come across first, so the order of the steps
that you work through may not be the same order as written here.

Patient Femur Analysis Overview

The patient femur analysis workflow starts with four inputs; MR images of the knee joint, motion capture data,
population mean hip model, population mean femur model. Because MR images are expensive and taking a full MR
image stack of the femur for a knee joint problem is not feasable we must augment the MR images with motion capture
(MOCAP) data of the patient. In doing this we are able to construct a set of points to fit a femur model to the patient.
In the case of the femur we require some internal points that are not available directly from the MOCAP data, but with
the help of a hip model we can determine the internal feature points that are required. With a patient specific model
we are able to take a set of consistent measurements that a clinician can make use of to determine the best course of
treatment for the patient.

Workflow walkthrough

As stated previously the workflow has four entry points, the order in which they are executed is not determinable so
here we follow a possible order from which you might have to deviate.
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Fig. 2.41: Task 2 patient femur analysis workflow.

Luckily two of the entry points are non-interactive and are setup when the steps are configured. For these steps we are
simply selecting a model and the population principal components from which the model can be modified. We require
two models in the case of the femur because the fiducial markers taken from the MOCAP data does not specify the
femur hip joint centre that is required for fitting the femur successfully. To satisfy this requirement we first register the
pelvis model and then take the hip joint centre landmarks from the fitted model. Thus augmenting the fiducial marker
set obtained from the MOCAP data.

The first interactive step that occurs when executing the workflow is the MOCAP viewer step (shown in Fig. 2.42). In
this step we can check that the MOCAP data is complete and has the correct names for the markers. Correct names are
not required but it does help the software automatically select the correct fiducial marker later on in the workflow. It is
important however for the fitting of the femur for the MOCAP data to have the knee medial and lateral points marked
and anterior superior iliac spine point marked. In our case we are fitting the left femur so we require these fiducial
markers on the left side of the subject. Using the MOCAP viewer step check that the ‘L.Knee’, ‘L.Knee.Lateral’,
‘L.ASIS’ and ‘V.SACRAL’ fiducial markers are present. The list box on the left has a list of all the fiducial markers
availble and selecting an entry in this list will highlight that marker in the 3D view of the data.

When you are satisfied that these feducial markers are present continue on to the next step. The next step is the
segmentation step, we need to segment the distal end of the femur so that we can fit the model to later. We do not
require a lot of segmentation points for the fit an advantage afforded to us when using PCA models.

Segmentation Step

The segmentation step is a reasonably advanced step that affords us the ability of segmenting an image stack with
individual segmentation points or besier curves. It also allows us to manipulate the segmentation plane in two ways;
the first is the ability to move the plane in the direction of the normal for the plane, the second is the ability to change
the orientation of the plane. These four modes are available through the toolbar at the top of the window (Fig. 2.43).
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Fig. 2.42: MOCAP data viewer showing the fiducial markers location and their associated labels.

Fig. 2.43: Segmentation toolbar showing the icons for the different tools available to the user.
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Segment

In the segment mode segmentation points can be added by using the ctrl key modifier and the left mouse button.
Unwanted segmentation points can be removed by selecting them and pressing the delete key or using the delete
button on the segmentation panel on the left-hand side. Note that it is not possible to delete a besier curve using the
segmentation point delete button or vice versa.

Beseir

In the Beseir mode segmentation points can be added along a curve defined by control points with extra segmentation
points placed between the control points automatically, the number of automatically added segmentation points can be
changed through the spin box in the Beseir panel on the left-hand side. Besier curves can be deleted by first selecting
a curve and pressing the delete key or throught the delete button under the Besier panel. Note that it is not possible to
delete a segmentation point when using the Besier curve delete button or vice versa.

Normal

In the normal mode a yellow arrow will be visible this arrow represents the normal of the segmentation plane. With
the normal arrow selected (when selected the arrow will be orange) we can move the segmentation plane forwards and
backwards in the direction of the segmenation plane normal.

Orientation

In the orientation mode a purple sphere will be visible in the centre of the segmentation plane. In this mode when we
attempt to orient the scene with the left mouse button it is the segmentation plane that is oreintated and not the scene.

For our needs in this situation we don’t require to segment every feature to the minutest of details. We do need to
concentrate on getting the pertinent aspects of the distal end of the femur segmented though. Segmenting the condials
and XXXXX parts of the femur is a must, essentially we must add segmentation points over the features of the femur
to enable an accurate final fit of the model. Because we are targeting a segmentation for a PCA based model we can
segment as little as 20 points and still achieve a satisfactory result.

You are able to load a pre-prepared segmentation using the load button on under the file tab. It is also possible to save
your own segmentation using the save button under the file tab. But beware that at this point you can only havea single
saved segmention, so using the save button will overwrite the pre-prepared segmentation.

Once the segmentation is finished continue on to the registration phase of the workflow.

Registration

The registration phase of the workflow consists of registering the population based model of the hip and femur to the
MOCAP fiducial markers, we also need to register the segmentation points defined in image coordinate system to the
patient coordinate system.

In Fig. 2.44 we see on the left-hand side a list of check boxes for controlling the visibility of the fiducial markers,
five combo boxes to assign model landmark points to fiducial marker points, four buttons to perfom a registration and
reject or accept the registration, two boxes that display error measurements of the fitted model and some controls for
taking a screen shot. On the right-hand side we see a 3D view of the pelvis model and the fiducial markers.

To register the pelvis model to the fiducial markers we must assign the model landmark points to the appropriate
fiducial markers. For the registration to work we must choose at least three points that are not co-linear. The landmark
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Fig. 2.44: Initial view of the register pelvis step.

points ‘L.ASIS’, ‘R.ASIS’ and ‘V.SACRAL’ satisfy this condition, we need to set the combo boxes to have the correct
values. Fig. 2.45 shows the correct associations.

Fig. 2.45: Association of pelvis model landmarks to fiducial markers.

With the correct associations made we can register the model to the markers. The registration process is a three stage
process (and if we watch carefully we can see the three stages as they happen); stage one rigid body fit, stage two rigid
body fit plus first principal component, stage three rigid body fit plus the first three pricipal components.

Press the register button to perform the registration, if the fit looks correct accept it to continue with the workflow.

Now it is time to register the femur to the subjects feducial markers, in Fig. 2.46 we see a very similar interface to what
was seen in the registration of the pelvis (Fig. 2.44). The only difference is that now we have a different set of model
landmarks that we are required to associate. If we look at the pelvis region in the 3D view we can see that now there
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are new feducial markers that were not present in the original MOCAP data. These of course have been generated
from the pelvis model so that we can make use of virtual internal markers for fitting the femur.

Fig. 2.46: Initial view of the register femur step.

Again we need to associate at least three points that are not co-linear, which is why we required the pelvis model. The
first two points that we can identify for the femur registration are the knee medial and knee lateral feducial markers.
But we do not have a third feducial marker which we can choose to associate with the femur. However, from the pelvis
model we can use the femoral head joint centre landmark as the third point for the registration. Fig. 2.47 shows the
correct associations for the left femur model.

Fig. 2.47: Association of femur model landmarks to fiducial markers.

Press the register button to perform the registration, if the fit looks correct accept it to continue with the workflow.

At this point in the workflow we need to register the segmented point cloud in magnet coordinates of the images to the
subject feducial marker coordinate system. Fig. 2.48

Again we have a related interface to the two previous registration steps with a few differences. Now instead of five
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Fig. 2.48: Initial view of the register segmented point cloud step.

comboboxes we have only one, the only combobox allows us to choose the type of registration to perform. In this
situation we want to perform an iterative closest point (ICP) source to target registration. If we were to set this
registration type in the registration type combobox and push the register button we get the result as seen in Fig. 2.49.

We can see here that some of the segmented points do not correspond very well to the point cloud generated from the
femur model, this should not be the case we should have a good correspondence between segmented points and model
points. The reason for this discrepency is because the ICP algorithm is very sensitive to initial alignment and the
minimum value the algorithm has converged to is a local minimum which is not the global minimum in the solution
space. To get a better registration we need to set the initial rotation of the segmented point cloud. In the initial rotation
line edit boxes set the values to 0, 90, -45. If you haven’t already, use the reset push button to reset the registration and
push the register button to perform the registration with the new initial values (see Fig. 2.50 for the correct settings).
We should now see a much better alignment of the two point clouds

Have a look at the fit, if we do not have enough segmented points it will be difficult for the ICP registration to find a
satisfactory fit to the model point cloud. In this situation, to get a satisfactory fit, we need to set the initial values so
that they are very close to the final values making the registration via ICP redundant.

When you have a satisfactory registration push the accept button.

We have now arrived at the last interactive step in this workflow (Fig. 2.51). We need to fit the PCA femur model to the
segmented point cloud. Again we see a very similar interface as we have seen previously in the registration steps the
difference is that we now have a fitting parameters section. For the fitting we want to fit the datapoints to the element
points (DPEP), set the distance model combobox to DPEP to make sure that the we are doing the fit in the correct
direction.

If we now fit the data to the model, using the fit push button, we see that the model has been fitted to the segmented
point cloud. We can also see that the top of the femur has moved quite a bit as well, this is because we have not
constrained that part of the model with any datapoints and thus it is free to move. We can, if so desired, pin the
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Fig. 2.49: Result of registering the segmented point cloud using ICP source-target registration method with the default
settings.

Fig. 2.50: Settings for the ICP source-target registration method.
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Fig. 2.51: Initial view of the model fitting step.

femoral head to the hip joint centre landmark to change this behaviour. For the purposes of this exercise we won’t do
this but it is something to keep in mind. Fig. 2.52 shows the final fitted model in yellow.

When we push the accept button the workflow will finish to it’s conclusion. The last few remaining steps take mea-
surements from the femur model and save them to disk. The idea here is that the measurements will be used to inform
a clinician or be used in a tool to aide in the subjects treatment.
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Fig. 2.52: The reference model (red) and the final fitted model (yellow).
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Introduction to (ODE) Modelling Best Practices
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– Reproducible and reusable model descriptions
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– Collaboration, versioning, discovery
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* Example models

– OpenCOR tutorial

In this part of the computational physiology module we demonstrate some modelling practices that we recommend
you follow when developing any mathematical model. The key principles are modularity, reuse, and reproducibility
- we demonstrate those here using the tool OpenCOR and the CellML and SED-ML formats, but the principles are
valid across the spectrum of computational physiology. It is also important to be able to share and collaborate with
other scientists and we demonstrate this using the Physiome Model Repository (PMR).

Here are a couple of links in case you need a refer back to some of the material covered earlier in the module.

• Create and run a simple CellML model: editing and simulation

• Open an existing CellML file from a local directory or the Physiome Model Repository

• SED-ML, functional curation and Web Lab
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Reproducible and reusable model descriptions

In this section we introduce some of the key concepts and best practices for ensuring your mathematical models are
reproducible and reusable.

Units

A model of ion channel gating and current: Introducing CellML units

A good example of a model based on a first order equation is the one used by Hodgkin and Huxley [AAF52] to describe
the gating behaviour of an ion channel (see also next three sections). Before we describe the gating behaviour of an
ion channel, however, we need to explain the concepts of the ‘Nernst potential’ and channel conductance.

An ion channel is a protein or protein complex embedded in the bilipid membrane surrounding a cell and containing a
pore through which an ion 𝑌 + (or 𝑌 −) can pass when the channel is open. If the concentration of this ion is [𝑌 +]𝑜 out-
side the cell and [𝑌 +]𝑖 inside the cell, the force driving an ion through the pore is calculated from the change in entropy.

Fig. 3.1: Distribution of microstates in a system [J97].
The 16 particles in a confined region (left) have only one
possible arrangement (W = 1) and therefore zero entropy
(𝑘𝐵 lnW = 0). When the barrier is removed and the num-
ber of possible locations for each particle increases 4x
(right), the number of possible arrangements for the 16
particles increases by 416 and the increase in entropy is
therefore 𝑙𝑛(416) or 16𝑙𝑛4. The thermal energy (temper-
ature) of the previously confined particles on the left has
been redistributed in space to achieve a more probable
(higher entropy) state. If we now added more particles
to the container on the right, the concentration would in-
crease and the entropy would decrease.

Entropy 𝑆 (𝐽.𝐾−1) is a measure of the number of mi-
crostates available to a system, as defined by Boltzmann’s
equation 𝑆 = 𝑘𝐵 lnW, where 𝑊 is the number of ways of
arranging a given distribution of microstates of a system
and 𝑘𝐵 is Boltzmann’s constant1. The driving force for ion
movement is the dispersal of energy into a more probable
distribution (see Fig. 3.1; cf. the second law of thermody-
namics2).

The energy change ∆𝑞 associated with this change of en-
tropy ∆𝑆 at temperature 𝑇 is ∆𝑞 = 𝑇∆𝑆 (J).

For a given volume of fluid the number of microstates 𝑊
available to a solute (and hence the entropy of the solute)
at a high concentration is less than that for a low concen-
tration3. The energy difference driving ion movement from
a high ion concentration [𝑌 +]𝑖 (lower entropy) to a lower
ion concentration [𝑌 +]𝑜 (higher entropy) is therefore

∆𝑞 = 𝑇∆𝑆 = 𝑘𝐵𝑇 (ln [𝑌 +]𝑜 − ln [𝑌 +]𝑖) =

𝑘𝐵𝑇 ln
[𝑌 +]

𝑜

[𝑌 +]𝑖
(𝐽.𝑖𝑜𝑛−1)

or

∆𝑄 = 𝑅𝑇 ln
[𝑌 +]

𝑜

[𝑌 +]𝑖
(𝐽.𝑚𝑜𝑙−1).

𝑅 = 𝑘𝐵𝑁𝐴 ≈ 1.34𝑥10−23(𝐽.𝐾−1)x6.02𝑥1023(𝑚𝑜𝑙−1) ≈
8.4(𝐽.𝑚𝑜𝑙−1𝐾−1) is the ‘universal gas con-
stant’4. At 25°C (298K), RT ≈ 2.5𝑘𝐽.𝑚𝑜𝑙−1.

1 The Brownian motion of individual molecules has energy 𝑘𝐵𝑇 (J), where the Boltzmann constant 𝑘𝐵 is approximately 1.34𝑥10−23 (𝐽.𝐾−1).
At 25°C, or 298K, 𝑘𝐵𝑇 = 4.10−21 (J) is the minimum amount of energy to contain a ‘bit’ of information at that temperature.

2 The first law of thermodynamics states that energy is conserved, and the second law (that natural processes are accompanied by an increase in
entropy of the universe) deals with the distribution of energy in space.

3 At infinitely high concentration the specified volume is jammed packed with solute and the entropy is zero.
4 𝑁𝐴 is Avogadro’s number (6.023𝑥1023) and is the scaling factor between molecular and macroscopic processes. Boltzmann’s constant 𝑘𝐵

and electron charge e operate at the atomic/molecular scale. Their effect at the physiological scale is via the universal gas constant 𝑅 = 𝑘𝐵𝑁𝐴

and Faraday’s constant 𝐹 = 𝑒𝑁𝐴.
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Every positively charged ion that crosses the membrane
raises the potential difference and produces an electrostatic driving force that opposes the entropic force (see Fig.
3.2). To move an electron of charge e (≈ 1.6𝑥10−19 C) through a voltage change of ∆𝜑 (V) requires energy 𝑒∆𝜑
(J) and therefore the energy needed to move an ion 𝑌 + of valence z=1 (the number of charges per ion) through
a voltage change of ∆𝜑 is ze∆𝜑 (𝐽.𝑖𝑜𝑛−1) or ze𝑁𝐴∆𝜑 (𝐽.𝑚𝑜𝑙−1). Using Faraday’s constant 𝐹 = 𝑒𝑁𝐴, where
𝐹 ≈ 0.96𝑥105𝐶.𝑚𝑜𝑙−1, the change in energy density at the macroscopic scale is zF∆𝜑 (𝐽.𝑚𝑜𝑙−1).

Fig. 3.2: The balance between entropic and
electrostatic forces determines the Nernst po-
tential.

No further movement of ions takes place when the force for entropy
driven ion movement exactly equals the opposing electrostatic driv-
ing force associated with charge movement:

zF∆𝜑 = RT ln
[𝑌 +]

𝑜

[𝑌 +]𝑖
(𝐽.𝑚𝑜𝑙−1) or ∆𝜑 = 𝐸𝑌 = RT

zF ln
[𝑌 +]

𝑜

[𝑌 +]𝑖

(𝐽.𝐶−1 or V)

where 𝐸𝑌 is the ‘equilibrium’ or ‘Nernst’ potential for 𝑌 +.
At 25°C (298K), RT

𝐹 = 2.5𝑥103

0.96𝑥105 (𝐽.𝐶−1) ≈ 25𝑚𝑉 .

For an open channel the electrochemical current flow is driven by
the open channel conductance 𝑔𝑌 times the difference between the
transmembrane voltage 𝑉 and the Nernst potential for that ion:

𝑖𝑌 =𝑔𝑌 (𝑉 − 𝐸𝑌 ).

Fig. 3.3: Open channel linear current-voltage
relation

This defines a linear current-voltage relation (‘Ohms
law’) as shown in Fig. 3.3. The gates to be dis-
cussed below modify this open channel conductance.

Fig. 3.4: Ion channel gating kinetics. y is the
fraction of gates in the open state. 𝛼_y and 𝛽_y
are the rate constants for opening and closing,
respectively.

Fig. 3.5: Transient behaviour for one gate (left)
and 𝛾 gates in series (right). Note that the right
hand graph has an initial S-shaped increase, re-
flecting the multiple gates in series.

To describe the time dependent transition between the closed and
open states of the channel, Hodgkin and Huxley introduced the idea
of channel gates that control the passage of ions through a membrane
ion channel. If the fraction of gates that are open is y, the fraction of
gates that are closed is 1 − 𝑦, and a first order ODE can be used to
describe the transition between the two states (see Fig. 3.4):
dy
dt = 𝛼𝑦 (1 − 𝑦) − 𝛽𝑦 .y

where 𝛼𝑦is the opening rate and 𝛽𝑦 is the closing rate.

The solution to this ODE is

𝑦 =
𝛼𝑦

𝛼𝑦+𝛽𝑦
+ 𝐴𝑒−(𝛼𝑦+𝛽𝑦)𝑡

The constant 𝐴 can be interpreted as 𝐴 = 𝑦 (0) − 𝛼𝑦

𝛼𝑦+𝛽𝑦
as in the

previous example and, with 𝑦 (0) = 0 (i.e. all gates initially shut),
the solution looks like Fig. 3.5(a).

The experimental data obtained by Hodgkin and Huxley for the
squid axon, however, indicated that the initial current flow began
more slowly (Fig. 3.5(b)) and they modelled this by assuming that
the ion channel had 𝛾 gates in series so that conduction would only occur when all gates were at least partially open.

3.1. Reproducible and reusable model descriptions 69



DTP Computational Physiology Documentation, Release 2017.02

Since 𝑦 is the probability of a gate being open, 𝑦𝛾 is the probability of all 𝛾 gates being open (since they are assumed
to be independent) and the current through the channel is

𝑖𝑌 = 𝑖𝑌 𝑦
𝛾 = 𝑦𝛾𝑔𝑌 (𝑉 − 𝐸𝑌 )

where 𝑖𝑌 = 𝑔𝑌 (𝑉 − 𝐸𝑌 ) is the steady state current through the open gate.

We can represent this in OpenCOR with a simple extension of the first order ODE model, but in developing this model
we will also demonstrate the way in which CellML deals with units.

Note that the decision to deal with units in CellML, rather than just ignoring them or insisting that all equations are
represented in dimensionless form, was made in order to be able to check the physical consistency of all terms in each
equation5.

There are seven base physical quantities defined by the International d’Unités (SI)6. These are (with their SI units):

• length (meter or m)

• time (second or s)

• amount of substance (mole)

• temperature (K)

• mass (kilogram or kg)

• current (amp or A)

• luminous intensity (candela).

All other units are derived from these seven. Additional derived units that CellML defines intrinsically (with their
dependence on previously defined units) are: Hz (𝑠−1); Newton, N (𝑘𝑔.𝑚.𝑠−1); Joule, J (𝑁.𝑚); Pascal, Pa (𝑁.𝑚−2);
Watt, W (𝐽.𝑠−1); Volt, V (𝑊.𝐴−1); Siemen, S (𝐴.𝑉 −1); Ohm, Ω (𝑉.𝐴−1); Coulomb, C (𝑠.𝐴); Farad, F (𝐶.𝑉 −1);
Weber, Wb (𝑉.𝑠); and Henry, H (𝑊𝑏.𝐴−1). Multiples and fractions of these are defined as follows:

Prefix deca hecto kilo mega giga tera peta exa zetta yotta
Multi-
ples

Sym-
bol

da h k M G T P E Z Y

Factor 100 101 102 103 106 109 1012 1015 1018 1021 1024

Prefix deci centi milli mi-
cro

nano pico femto atto zepto yocto

Fractions Sym-
bol

d c m 𝜇 n p f a z y

Factor 100 10−1 10−2 10−3 10−6 10−9 10−12 10−15 10−18 10−21 10−24

Units for this model, with multiples and fractions, are illustrated in the following CellML Text code:

1 def model first_order_model as
2 def unit millisec as
3 unit second {pref: milli};
4 enddef;
5 def unit per_millisec as
6 unit second {pref: milli, expo: -1};
7 enddef;
8 def unit millivolt as
9 unit volt {pref: milli};

10 enddef;
11 def unit microA_per_cm2 as

5 It is well accepted in engineering analysis that thinking about and dealing with units is a key aspect of modelling. Taking the ratio of
dimensionally consistent terms provides non-dimensional numbers which can be used to decide when a term in an equation can be omitted in the
interests of modelling simplicity. We investigate this idea further in a later section.

6 http://en.wikipedia.org/wiki/International_System_of_Units

70 Chapter 3. Introduction to (ODE) Modelling Best Practices

http://en.wikipedia.org/wiki/International_System_of_Units


DTP Computational Physiology Documentation, Release 2017.02

12 unit ampere {pref: micro};
13 unit metre {pref: centi, expo: -2};
14 enddef;
15 def unit milliS_per_cm2 as
16 unit siemens {pref: milli};
17 unit metre {pref: centi, expo: -2};
18 enddef;
19 def comp ion_channel as
20 var V: millivolt {init: 0};
21 var t: millisec {init: 0};
22 var y: dimensionless {init: 0};
23 var E_y: millivolt {init: -85};
24 var i_y: microA_per_cm2;
25 var g_y: milliS_per_cm2 {init: 36};
26 var gamma: dimensionless {init: 4};
27 var alpha_y: per_millisec {init: 1};
28 var beta_y: per_millisec {init: 2};
29 ode(y, t) = alpha_y*(1{dimensionless}-y)-beta_y*y;
30 i_y = g_y*pow(y, gamma)*(V-E_y);
31 enddef;
32 enddef;

Line 2: Define units for time as millisecs
Line 5: Define per_millisec units
Line 8: Define units for voltage as millivolts
Line 11: Define units for current as microAmps per cm2

Line 15: Define units for conductance as milliSiemens per cm2

Lines 20-28: Define units and initial conditions for variables
Line 29: Define ODE for gating variable y
Line 30: Define channel current

The solution of these equations for the parameters indicated above is illustrated in Fig. 3.6.

The model of a gated ion channel presented here is used in the next two sections for the neural potassium and sodium
channels and then in Section 11 for cardiac ion channels. The gates make the channel conductance time dependent
and, as we will see in the next section, the experimentally observed voltage dependence of the gating rate constants
𝛼𝑦 and 𝛽𝑦 means that the channel conductance (including the open channel conductance) is voltage dependent. For
a partially open channel (𝑦 < 1), the steady state conductance is (𝑦∞)

𝛾
.𝑔𝑌 , where 𝑦∞ =

𝛼𝑦

𝛼𝑦+𝛽𝑦
. Moreover the

gating time constants 𝜏 = 1
𝛼𝑦+𝛽𝑦

are therefore also voltage dependent. Both of these voltage dependent factors of ion
channel gating are important in explaining channel properties, as we show now for the neural potassium and sodium
ion channels.

The first concept is that everything in your model should have clearly defined physical dimensions (or at least a clear
statement that the quantity has no physical dimension). This ensures that when a scientist reuses a model they are
able to use software tools to check for dimensional consistency and even potentially automatically convert quantities
as required.

1. Take a look through the section A model of ion channel gating and current: Introducing CellML units for a
discussion and some examples demonstrating the use of units in CellML and OpenCOR.
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Fig. 3.6: The behaviour of an ion channel with 𝛾 = 4 gates transitioning from the closed to the open state at a
membrane voltage 𝑉 = 0 (OpenCOR link). The opening and closing rate constants are 𝛼𝑦 = 1 ms-1 and 𝛽𝑦 = 2 ms-1.
The ion channel has an open conductance of 𝑔𝑌 = 36 mS.cm-2 and an equilibrium potential of 𝐸𝑌 = −85 mV. The
upper transient is the response 𝑦 (𝑡) for each gate and the lower trace is the current through the channel. Note the slow
start to the current trace in comparison with the single gate transient 𝑦 (𝑡).
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Modularity

A model of the potassium channel: Introducing CellML components and connections

We now deal specifically with the application of the previous model to the Hodgkin and Huxley (HH) potassium
channel. Following the convention introduced by Hodgkin and Huxley, the gating variable for the potassium channel
is 𝑛 and the number of gates in series is 𝛾 = 4, therefore

𝑖𝐾 = ¯𝑖𝐾𝑛4 = 𝑛4𝑔𝐾 (𝑉 − 𝐸𝐾)

where 𝑔𝐾 = 36mS.cm−2, and with intra- and extra-cellular concentrations [𝐾+]𝑖 = 90mM and [𝐾+]𝑜 = 3mM,
respectively, the Nernst potential for the potassium channel (𝑧 = 1 since one +ve charge on 𝐾+) is

𝐸𝑘 = RT
zF 𝑙𝑛

[𝐾+]
𝑜

[𝐾+]𝑖
= 25 𝑙𝑛 3

90 = −85mV.

As noted above, this is called the equilibrium potential since it is the potential across the cell mem-
brane when the channel is open but no current is flowing because the electrostatic driving force
from the potential (voltage) difference between internal and external ion charges is exactly matched by
the entropic driving force from the ion concentration difference. 𝑛4𝑔𝐾 is the channel conductance.

Fig. 3.7: Voltage dependence of rate constants 𝛼𝑛 and
𝛽𝑛 (ms−1), time constant 𝜏𝑛 (ms) and relative conduc-
tance 𝑔𝑆𝑆

𝑔𝑌
.

The gating kinetics are described (as before) by
dn
dt = 𝛼𝑛 (1 − 𝑛) − 𝛽𝑛.n

with time constant 𝜏𝑛 = 1
𝛼𝑛+𝛽𝑛

(see A simple first order
ODE).

The main difference from the gating model in our previous
example is that Hodgkin and Huxley found it necessary to
make the rate constants functions of the membrane poten-
tial 𝑉 (see Fig. 3.7) as follows1:

𝛼𝑛 = −0.01(𝑉+65)

𝑒
−(𝑉 +65)

10 −1
; 𝛽𝑛 = 0.125𝑒

−(𝑉 +75)
80 .

Note that under steady state conditions when 𝑡 → ∞ and
dn
dt → 0, 𝑛|𝑡=∞ = 𝑛∞ = 𝛼𝑛

𝛼𝑛+𝛽𝑛
.

The voltage dependence of the steady state channel con-
ductance is then

𝑔SS =
(︁

𝛼𝑛

𝛼𝑛+𝛽𝑛

)︁4

.𝑔𝑌 .

(see Fig. 3.7). The steady state current-voltage relation for
the channel is illustrated in Fig. 3.8.

These equations are captured with OpenCOR CellML Text
view (together with the previous unit definitions) below. But first we need to explain some further CellML concepts.

1 The original expression in the HH paper used 𝛼𝑛 =
0.01(𝑣+10)

𝑒
(𝑣+10)

10 −1

and 𝛽𝑛 = 0.125𝑒
𝑣
80 , where 𝑣 is defined relative to the resting potential

(−75mV) with +ve corresponding to +ve inward current and 𝑣 = −(𝑉 + 75).
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Fig. 3.8: The steady-state current-voltage relation for the
potassium channel.

Fig. 3.9: Key entities in a CellML model.

We introduced CellML units above. We now need to in-
troduce three more CellML constructs: components, con-
nections (mappings between components) and groups. For
completeness we also show one other construct in Fig. 3.9,
imports, that will be used later in A model of the nerve ac-
tion potential: Introducing CellML imports.

Defining components serves two purposes: it preserves a
modular structure for CellML models, and allows these
component modules to be imported into other models, as
we will illustrate later [DPPJ03]. For the potassium chan-
nel model we define components representing (i) the envi-
ronment, (ii) the potassium channel conductivity, and (iii)
the dynamics of the n-gate.

Since certain variables (t, V and n) are shared between
components, we need to also define the component maps
as indicated in the CellML Text view below.

The CellML Text code for the potassium ion channel model
is as follows2:

Potassium_ion_channel.cellml

1 def model potassium_ion_channel as
2 def unit millisec as
3 unit second {pref: milli};
4 enddef;
5 def unit per_millisec as
6 unit second {pref: milli, expo: -1};
7 enddef;
8 def unit millivolt as
9 unit volt {pref: milli};

10 enddef;
11 def unit per_millivolt as
12 unit millivolt {expo: -1};
13 enddef;
14 def unit per_millivolt_millisec as
15 unit per_millivolt;
16 unit per_millisec;
17 enddef;
18 def unit microA_per_cm2 as

2 From here on we use a coloured background to identify code blocks that relate to a particular CellML construct: units, components, mappings
and encapsulation groups and later imports.
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19 unit ampere {pref: micro};
20 unit metre {pref: centi, expo: -2};
21 enddef;
22 def unit milliS_per_cm2 as
23 unit siemens {pref: milli};
24 unit metre {pref: centi, expo: -2};
25 enddef;
26 def unit mM as
27 unit mole {pref: milli};
28 enddef;
29 def comp environment as
30 var V: millivolt { pub: out};
31 var t: millisec {pub: out};
32 V = sel
33 case (t

→˓> 5 {millisec}) and (t < 15 {millisec}):
34 -85.0 {millivolt};
35 otherwise:
36 0.0 {millivolt};
37 endsel;
38 enddef;
39 def group as encapsulation for
40 comp potassium_channel incl
41 comp potassium_channel_n_gate;
42 endcomp;
43 enddef;
44 def comp potassium_channel as
45

→˓ var V: millivolt {pub: in , priv: out};
46

→˓ var t: millisec {pub: in, priv: out};
47 var n: dimensionless {priv: in};
48 var i_K: microA_per_cm2 {pub: out};
49 var g_K: milliS_per_cm2 {init: 36};
50 var Ko: mM {init: 3};
51 var Ki: mM {init: 90};
52 var RTF: millivolt {init: 25};
53 var E_K: millivolt;
54 var K_

→˓conductance: milliS_per_cm2 {pub: out};
55 E_K=RTF*ln(Ko/Ki);
56 K_conductance

→˓= g_K*pow(n, 4{dimensionless});
57 i_K = K_conductance(V-E_K);
58 enddef;
59 def comp potassium_channel_n_gate as
60 var V: millivolt {pub: in};
61 var t: millisec {pub: in};
62 var n:

→˓dimensionless {init: 0.325, pub: out};
63 var alpha_n: per_millisec;
64 var beta_n: per_millisec;
65 alpha_n = 0.01{per_

→˓millivolt_millisec}*(V+10{millivolt})
66 /(exp((V+10{millivolt}

→˓)/10{millivolt})-1{dimensionless});
67 beta_n = 0.

→˓125{per_millisec}*exp(V/80{millivolt});
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68 ode(n, t)
→˓= alpha_n*(1{dimensionless}-n)-beta_n*n;

69 enddef;
70 def map between

→˓environment and potassium_channel for
71 vars V and V;
72 vars t and t;
73 enddef;
74 def map between potassium_channel and
75 potassium_channel_n_gate for
76 vars V and V;
77 vars t and t;
78 vars n and n;
79 enddef;
80 enddef;

Lines 2-28: Define units.
Lines 29-38: Define component ‘environment’.
Lines 32-37: Define voltage step.
Lines 39-43: Define encapsulation of ‘n_gate’.
Lines 44-58: Define component ‘potassium_channel’.
Lines
59-69: Define component ‘potassium_channel_n_gate’.
Lines 70-79: Define mappings between components for
variables that are shared between these components.

Note that several other features have been added:

• the event control select case which indicates that the voltage is specified to jump from 0 mV to -85 mV at t
= 5 ms then back to 0 mV at t = 15 ms. This is only used here in order to test the K channel model; when
the potassium_channel component is later imported into a neuron model, the environment component is not
imported.

• the use of encapsulation to embed the potassium_channel_n_gate inside the potassium_channel. This avoids
the need to establish mappings from environment to potassium_channel_n_gate since the gate component is
entirely within the channel component.

• the use of {𝑝𝑢𝑏 : 𝑖𝑛} and {𝑝𝑢𝑏 : 𝑜𝑢𝑡} to indicate which variables are either supplied as inputs to a component or
produced as outputs from a component3. Any variables not labelled as in or out are local variables or parameters
defined and used only within that component. Public (and private) interfaces are discussed in more detail in the
next section.

We now use OpenCOR, with Ending point 40 and Point interval 0.1, to solve the equations for the potassium channel
under a voltage step condition in which the membrane voltage is clamped initially at 0mV and then stepped down to
-85mV for 10ms before being returned to 0mV. At 0mV, the steady state value of the n gate is 𝑛∞ = 𝛼𝑛

𝛼𝑛+𝛽𝑛
= 0.324

and, at -85mV, 𝑛∞ = 0.945.

The voltage traces are shown at the top of Figure 21. The n-gate response, shown next, is to open further from its
partially open value of 𝑛 =0.324 at 0mV and then plateau at an almost fully open state of 𝑛 =0.945 at the Nernst
potential -85mV before closing again as the voltage is stepped back to 0mV. Note that the gate opening behaviour (set
by the voltage dependence of the 𝛼𝑛 opening rate constant) is faster than the closing behaviour (set by the voltage

3 Note that a later version of CellML will remove the terms in and out since it is now thought that the direction of information flow should not
be constrained.
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dependence of the 𝛽𝑛 closing rate constant). The channel conductance (= 𝑛4𝑔𝐾) is shown next – note the initial
s-shaped conductance increase caused by the 𝑛4 (four gates in series) effect on conductance. Finally the channel
current 𝑖𝐾 = conductance x (𝑉 − 𝐸𝐾) is shown at the bottom. Because the voltage is clamped at the Nernst potential
(-85mV) during the period when the gate is opening, there is no current flow, but when the voltage is stepped back
to 0mV, the open gates begin to close and the conductance declines but now there is a voltage gradient to drive an
outward (positive) current flow through the partially open channel – albeit brief since the channel is closing.

Fig. 3.10: Kinetics of the potassium channel gates for a voltage step from 0mV to -85mV (OpenCOR link). The
voltage clamp step is shown at the top, then the n gate first order response, then the channel conductance, then the
channel current. Notice how the conductance is slightly slower to turn on (due to the four gates in series) but fast to
inactivate. Current only flows when there is a non-zero conductance and a non-zero voltage gradient. This is called
the ‘tail current’.

Note that the CellML Text code above includes the Nernst equation with its dependence on the concentrations [𝐾+]𝑖=
90mM and [𝐾+]𝑜= 3mM. Try raising the external potassium concentration to [𝐾+]𝑜= 10mM – you will then see the
Nernst potential increase from -85mV to -55mV and a negative (inward) current flowing during the period when the
membrane voltage is clamped to -85mV. The cell is now in a ‘hyperpolarised’ state because the potential is less than
the equilibrium potential.

Note that you can change a model parameter such as [𝐾+]𝑜 either by changing the value in the left hand Parameters
window (which leaves the file unchanged) or by editing the CellML Text code (which does change the file when you
save from CellML Text view – which you have to do to see the effect of that change.

This potassium channel model will be used later, along with a sodium channel model and a leakage channel model, to
form the Hodgkin-Huxley neuron model, where the membrane ion channel current flows are coupled to the equations
governing current flow along the axon to generate an action potential.
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A model of the sodium channel: Introducing CellML encapsulation and interfaces

The HH sodium channel has two types of gate, an 𝑚 gate (of which there are 3) that is initially closed (𝑚 = 0) before
activating and inactivating back to the closed state, and an ℎ gate that is initially open (ℎ = 1) before activating and
inactivating back to the open state. The short period when both types of gate are open allows a brief window current
to pass through the channel. Therefore,

𝑖Na = �̄�Na𝑚
3ℎ = 𝑚3h.𝑔Na (𝑉 − 𝐸Na)

where 𝑔Na = 120 mS.cm-2, and with
[︀
Na+

]︀
𝑖
= 30mM and

[︀
Na+

]︀
𝑜
= 140mM, the Nernst potential for the sodium

channel (z=1) is

𝐸Na =
RT
zF

𝑙𝑛

[︀
Na+

]︀
𝑜[︀

Na+
]︀
𝑖

= 25 𝑙𝑛
140

30
= 35mV.

The gating kinetics are described by

dm
dt

= 𝛼𝑚 (1 −𝑚) − 𝛽𝑚.m;
dh
dt

= 𝛼ℎ (1 − ℎ) − 𝛽ℎ.h

where the voltage dependence of these four rate constants is determined experimentally to be1

𝛼𝑚 =
−0.1 (𝑉 + 50)

𝑒
−(𝑉 +50)

10 − 1
;𝛽𝑚 = 4𝑒

−(𝑉 +75)
18 ;𝛼ℎ = 0.07𝑒

−(𝑉 +75)
20 ;𝛽ℎ =

1

𝑒
−(𝑉 +45)

10 + 1
.

Before we construct a CellML model of the sodium channel, we first introduce some further CellML concepts that help
deal with the complexity of biological models: first the use of encapsulation groups and public and private interfaces
to control the visibility of information in modular CellML components. To understand encapsulation, it is useful to
use the terms ‘parent’, ‘child’ and ‘sibling’.

def group as encapsulation for
comp sodium_channel incl

comp sodium_channel_m_gate;
comp sodium_channel_h_gate;

endcomp;
enddef;

We define the CellML components sodium_channel_m_gate and sodium_channel_h_gate below. Each of these
components has its own equations (voltage-dependent gates and first order gate kinetics) but they are both parts of one
protein – the sodium channel – and it is useful to group them into one sodium_channel component as shown above:

We can then talk about the sodium channel as the parent of two children: the m gate and the h gate, which are therefore
siblings. A private interface allows a parent to talk to its children and a public interface allows siblings to talk among
themselves and to their parents (see Fig. 3.11).

The OpenCOR CellML Text for the HH sodium ion channel is given below.

Sodium_ion_channel.cellml

def model sodium_ion_channel as
def unit millisec as

unit second {pref: milli};
enddef;
def unit per_millisec as

unit second {pref: milli, expo: -1};
enddef;

1 The HH paper used 𝛼𝑚 =
0.1(𝑣+25)

𝑒
(𝑣+25)

10 −1

; 𝛽𝑚 = 4𝑒
𝑣
18 ; 𝛼ℎ = 0.07𝑒

𝑣
20 ; 𝛽ℎ = 1

𝑒
(𝑣+30)

10 +1

;.
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Fig. 3.11: Children talk to each other as siblings, and to their parents, via public interfaces. But the outside world can
only talk to children through their parents via a private interface. Note that the siblings m_gate and h_gate could talk
via a public interface but only if a mapping is established between them (not needed here).
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def unit millivolt as
unit volt {pref: milli};

enddef;
def unit per_millivolt as

unit millivolt {expo: -1};
enddef;
def unit per_millivolt_millisec as

unit per_millivolt;
unit per_millisec;

enddef;
def unit microA_per_cm2 as

unit ampere {pref: micro};
unit metre {pref: centi, expo: -2};

enddef;
def unit milliS_per_cm2 as

unit siemens {pref: milli};
unit metre {pref: centi, expo: -2};

enddef;
def unit mM as

unit mole {pref: milli};
enddef;
def comp environment as

var V: millivolt {pub: out};
var t: millisec {pub: out};
V = sel
case (t > 5 {millisec}) and (t < 15 {millisec}):

-20.0 {millivolt};
otherwise:

-85.0 {millivolt};
endsel;

enddef;
def group as encapsulation for

comp sodium_channel incl
comp sodium_channel_m_gate;
comp sodium_channel_h_gate;

endcomp;
enddef;
def comp sodium_channel as

var V: millivolt {pub: in, priv: out};
var t: millisec {pub: in, priv: out };
var m: dimensionless {priv: in};
var h: dimensionless {priv: in};
var g_Na: milliS_per_cm2 {init: 120};
var E_Na: millivolt {init: 35};
var i_Na: microA_per_cm2 {pub: out};
var Nao: mM {init: 140};
var Nai: mM {init: 30};
var RTF: millivolt {init: 25};
var E_Na: millivolt;
var Na_conductance: milliS_per_cm2 {pub: out};

E_Na=RTF*ln(Nao/Nai);
Na_conductance = g_Na*pow(m, 3{dimensionless})*h);
i_Na= Na_conductance*(V-E_Na);

enddef;
def comp sodium_channel_m_gate a s
var V: millivolt {pub: in};
var t: millisec {pub: in};
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var alpha_m: per_millisec;
var beta_m: per_millisec;
var m: dimensionless {init: 0.05, pub: out};
alpha_m = 0.1{per_millivolt_millisec}*(V+25{millivolt})

/(exp((V+25{millivolt})/10{millivolt})-1{dimensionless});
beta_m = 4{per_millisec}*exp(V/18{millivolt});
ode(m, t) = alpha_m*(1{dimensionless}-m)-beta_m*m;

enddef;
def comp sodium_channel_h_gate as

var V: millivolt {pub: in};
var t: millisec {pub: in};
var alpha_h: per_millisec;
var beta_h: per_millisec;
var h: dimensionless {init: 0.6, pub: out};
alpha_h = 0.07{per_millisec}*exp(V/20{millivolt});
beta_h = 1{per_millisec}/(exp((V+30{millivolt})/10{millivolt})+1{dimensionless}

→˓);
ode(h, t) = alpha_h*(1{dimensionless}-h)-beta_h*h;

enddef;
def map between environment and sodium_channel for

vars V and V;
vars t and t;

enddef;
def map between sodium_channel and sodium_channel_m_gate for

vars V and V;
vars t and t;
vars m and m;

enddef;
def map between sodium_channel and sodium_channel_h_gate for

vars V and V;
vars t and t;
vars h and h;

enddef;
enddef;

The results of the OpenCOR computation, with Ending point 40 and Point interval 0.1, are shown in Fig. 3.12 with
plots 𝑉 (𝑡), 𝑚 (𝑡), ℎ (𝑡), 𝑔Na (𝑡) and 𝑖Na(𝑡) for voltage steps from (a) -85mV to -20mV, (b) -85mV to 0mV and (c)
-85mV to 20mV. There are several things to note:

1. The kinetics of the m-gate are much faster than the h-gate.

2. The opening behaviour is faster as the voltage is stepped to higher values since 𝜏 = 1
𝛼𝑛+𝛽𝑛

reduces with
increasing V (see Fig. 3.7).

3. The sodium channel conductance rises (activates) and then falls (inactivates) under a positive voltage step from
rest since the three m-gates turn on but the h-gate turns off and the conductance is a product of these. Compare
this with the potassium channel conductance shown in Fig. 3.10 which is only reduced back to zero by stepping
the voltage back to its resting value – i.e. deactivating it.

4. The only time current 𝑖Na flows through the sodium channel is during the brief period when the m-gate is rapidly
opening and the much slower h-gate is beginning to close. A small current flows during the reverse voltage step
but this is at a time when the h-gate is now firmly off so the magnitude is very small.

5. The large sodium current 𝑖Na is an inward current and hence negative.

Note that the bottom trace does not quite line up at t=0 because the values shown on the axes are computed automati-
cally and hence can take more or less space depending on their magnitude.
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Fig. 3.12: Kinetics of the sodium channel gates for voltage steps to (a) -20mV, (b) 0mV (OpenCOR link), and (c)
20mV.
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The second concept is that of modularity. By defining your mathematical model in a modular fashion with clearly
defined interfaces you ensure that other scientists (and even yourself!) are able to make sure of the modules in future
novel work.

2. The section A model of the potassium channel: Introducing CellML components and connections provides an
introduction to the syntax for defining modules in CellML and the mechanism for defining the communication
between the modules.

3. A model of the sodium channel: Introducing CellML encapsulation and interfaces then introduces the concept of
hierarchically grouping modules as an aide to reuse and abstraction, as well as definition of module interfaces.

Reuse

A model of the nerve action potential: Introducing CellML imports

Here we describe the first (and most famous) model of nerve fibre electrophysiology based on the membrane ion
channels that we have discussed in the last two sections. This is the work by Alan Hodgkin and Andrew Huxley
in 1952 [AAF52] that won them (together with John Eccles) the 1963 Noble prize in Physiology or Medicine for
“their discoveries concerning the ionic mechanisms involved in excitation and inhibition in the peripheral and central
portions of the nerve cell membrane”.

Cable equation

The cable equation was developed in 18901 to predict the degradation of an elec-
trical signal passing along the transatlantic cable. It is derived as follows:

Fig. 3.13: Current flow in a leaky cable.

If the voltage is raised at the left hand end of the cable (shown by
the deep red in Fig. 3.13), a current 𝑖𝑎 (A) will flow that depends
on the voltage gradient, given by 𝜕𝑉

𝜕𝑥 (𝑉.𝑚−1) and the resistance 𝑟𝑎
(Ω.𝑚−1), Ohm’s law gives −𝜕𝑉

𝜕𝑥 = 𝑟𝑎𝑖𝑎 . But if the cable leaks
current 𝑖𝑚 (𝐴.𝑚−1) per unit length of cable, conservation of current
gives 𝜕𝑖𝑎

𝜕𝑥 = 𝑖𝑚 and therefore, substituting for 𝑖𝑎 , 𝜕
𝜕𝑥

(︁
− 1

𝑟𝑎
𝜕𝑉
𝜕𝑥

)︁
=

𝑖𝑚 . There are two sources of membrane current 𝑖𝑚 , one associated
with the capacitance 𝐶𝑚 (≈ 1𝜇𝐹/cm2) of the membrane, 𝐶𝑚

𝜕𝑉
𝜕𝑡 ,

and one associated with holes or channels in the membrane, 𝑖leak.
Inserting these into the RHS gives

𝜕

𝜕𝑥

(︂
− 1

𝑟𝑎

𝜕𝑉

𝜕𝑥

)︂
= 𝑖𝑚 = 𝐶𝑚

𝜕𝑉

𝜕𝑡
+ 𝑖leak

Rearranging gives the cable equation (for constant 𝑟𝑎):

𝐶𝑚
𝜕𝑉

𝜕𝑡
= − 1

𝑟𝑎

𝜕2𝑉

𝜕𝑥2
− 𝑖leak

where all terms represent current density (current per membrane area) and have units of 𝜇𝐴/cm2.

Action potentials

1 http://en.wikipedia.org/wiki/Cable_theory
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Fig. 3.14: Current flow in a neuron.

The cable equation can be used to model the propagation of an
action potential along a neuron or any other excitable cell. The
‘leak’ current is associated primarily with the inward movement of
sodium ions through the membrane ‘sodium channel’, giving the in-
ward membrane current 𝑖Na, and the outward movement of potas-
sium ions through a membrane ‘potassium channel’, giving the out-
ward current 𝑖𝐾 (see Fig. 3.14). A further small leak current 𝑖𝐿 =
𝑔𝐿 (𝑉 − 𝐸𝐿) associated with chloride and other ions is also included.

When the membrane potential 𝑉 rises due to axial current flow, the
Na channels open and the K channels close, such that the membrane potential moves towards the Nernst potential
for sodium. The subsequent decline of the Na channel conductance and the increasing K channel conductance as the
voltage drops rapidly repolarises the membrane to its resting potential of -85mV (see Fig. 3.15).

Fig. 3.15: Current-voltage trajectory during an action poten-
tial.

We can neglect2 the term (− 1
𝑟𝑎

𝜕2𝑉
𝜕𝑥2 ) (the rate of change

of axial current along the cable) for the present mod-
els since we assume the whole cell is clamped with
an axially uniform potential. We can therefore obtain
the membrane potential 𝑉 by integrating the first order
ODE

dV
dt

= − (𝑖Na + 𝑖𝐾 + 𝑖𝐿) /𝐶𝑚.

Fig. 3.16: A schematic cell diagram describing the current flows across the cell bilipid membrane that are captured in
the Hodgkin-Huxley model. The membrane ion channels are a sodium (Na+) channel, a potassium (K+) channel, and
a leakage (L) channel (for chloride and other ions) through which the currents INa, IK and IL flow, respectively.

We use this example to demonstrate the importing fea-
ture of CellML. CellML imports are used to bring a
previously defined CellML model of a component into

2 This term is needed when determining the propagation of the action potential, including its wave speed.
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the new model (in this case the Na and K channel com-
ponents defined in the previous two sections, together
with a leakage ion channel model specified below). Note that importing a component brings the children components
with it along with their connections and units, but it does not bring the siblings of that component with it.

To establish a CellML model of the HH equations we first lay out the model components with their public and private
interfaces (Fig. 3.17).

Fig. 3.17: Overall structure of the HH CellML model showing the encapsulation hierarchy (purple), the CellML model
imports (blue) and the other key parts (units, components, and mappings) of the top level CellML model.

The HH model is the top level model. The CellML Text code for the HH model, together with the leakage_channel
model, is given below. The imported potassium_ion_channel model and sodium_ion_channel model are unchanged
from the previous sections

HH.cellml

def model HH as
def import using "sodium_ion_channel.cellml" for

comp Na_channel using comp sodium_channel;
enddef;
def import using "potassium_ion_channel.cellml" for
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comp K_channel using comp potassium_channel;
enddef;
def import using "leakage_ion_channel.cellml"" for

comp L_channel using comp leakage_channel;
enddef;
def unit millisec as

unit second {pref: milli};
enddef;
def unit millivolt as

unit volt {pref: milli};
enddef;
def unit microA_per_cm2 as

unit ampere {pref: micro};
unit metre {pref: centi, expo: -2};

enddef;
def unit microF_per_cm2 as

unit farad {pref: micro};
unit metre {pref: centi, expo: -2};

enddef;
def group as encapsulation for

comp membrane incl
comp Na_channel;
comp K_channel;
comp L_channel;

endcomp;
enddef;
def comp environment as

var V: millivolt {init: -85, pub: out};
var t: millisec {pub: out};

enddef;
def map between environment and membrane for

vars V and V;
vars t and t;

enddef;
def map between membrane and Na_channel for

vars V and V;
vars t and t;
vars i_Na and i_Na;

enddef;
def map between membrane and K_channel for

vars V and V;
vars t and t;
vars i_K and i_K;

enddef;
def map between membrane and L_channel for

vars V and V;
vars i_L and i_L;

enddef;
def comp membrane as

var V: millivolt {pub: in, priv: out};
var t: millisec {pub: in, priv: out};
var i_Na: microA_per_cm2 {pub: out, priv: in};
var i_K: microA_per_cm2 {pub: out, priv: in};
var i_L: microA_per_cm2 {pub: out, priv: in};
var Cm: microF_per_cm2 {init: 1};
var i_Stim: microA_per_cm2;
var i_Tot: microA_per_cm2;
i_Stim = sel
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case (t >= 1{millisec}) and (t <= 1.2{millisec}):
100{microA_per_cm2};

otherwise:
0{microA_per_cm2};

endsel;
i_Tot = i_Stim + i_Na + i_K + i_L;
ode(V,t) = -i_Tot/Cm;

enddef;
enddef;

Leakage_ion_channel

def model leakage_ion_channel as
def unit millisec as

unit second {pref: milli};
enddef;
def unit millivolt as

unit volt {pref: milli};
enddef;
def unit per_millivolt as

unit millivolt {expo: -1};
enddef;
def unit microA_per_cm2 as

unit ampere {pref: micro};
unit metre {pref: centi, expo: -2};

enddef;
def unit milliS_per_cm2 as

unit siemens {pref: milli};
unit metre {pref: centi, expo: -2};

enddef;
def comp environment as

var V: millivolt {init: 0, pub: out};
var t: millisec {pub: out};

enddef;
def map between leakage_channel and environment for

vars V and V;
enddef;
def comp leakage_channel as

var V: millivolt {pub: in};
var i_L: microA_per_cm2 {pub: out};
var g_L: milliS_per_cm2 {init: 0.3};
var E_L: millivolt {init: -54.4};
i_L = g_L*(V-E_L);

enddef;
enddef;

Note that the CellML Text code for the potassium channel is Potassium_ion_channel.cellml and for the sodium channel
is Sodium_ion_channel.cellml.

Note that the only units that need to be defined for this top level HH model are the ones explicitly required for the
membrane component. All the other units, required for the various imported sub-models, are imported along with the
imported components.

The results generated by the HH model are shown in Fig. 3.18.
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Fig. 3.18: Results from OpenCOR for the Hodgkin Huxley (HH) CellML model. The top panel shows the generated
action potential. Note that the stimulus current is not really needed as the background outward leakage current is
enough to drive the membrane potential up to the threshold for sodium channel opening.
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Important note

It is often convenient to have the sub-models – in this case the sodium_ion_channel.cellml model, the potas-
sium_ion_channel.cellml model and the leakage_ion_channel.cellml model - loaded into OpenCOR at the same time
as the high level model (HH.cellml), as shown in Fig. 3.19 . If you make changes to a model in the CellML Text view,
you must save the file (CTRL-S) before running a new simulation since the simulator works with the saved model.
Furthermore, a change to a sub-model will only affect the high level model which imports it if you also save the high
level model (or use the Reload option under the File menu). An asterisk appears next to the name of a file when a
change has been made and the file has not been saved. The asterisk disappears when the file is saved.

Fig. 3.19: The HH.cellml model and its three sub-models are available under separate tabs in OpenCOR.

A model of the cardiac action potential: Importing units and parameters

We now examine the Noble 1962 model [D62] that applied the Hodgkin-Huxley approach to cardiac cells and thereby
initiated the development of a long line of cardiac cell models that, in their human cell formulation, are now used
clinically and are the most sophisticated models of any cell type. It was the incorporation of these models into whole
heart bioengineering models that initiated the Physiome Project. We also illustrate the use of imported units and
imported parameter sets.

Cardiac cells have similar gradients of potassium and sodium ions that operate in a similar way to neurons (as do all
electrically active cells). There is one major difference, however, in the potassium channel that holds the cells in their
resting state at -85mV (HH neuron) or -100mV (cardiac Purkinje cells). This difference is illustrated in Fig. 3.20(a).
When the membrane potential is raised above the equilibrium potential for potassium, the cardiac channel conductance
shown by the dashed line drops to nearly zero – i.e. it is an inward rectifier since it rectifies (‘cuts off’) the outward
current that otherwise would have flowed through the channel at that potential. This is an evolutionary adaptation of
the potassium channel to avoid loss of potassium ions out of the cell during the long plateau phase of the cardiac action
potential (Fig. 3.20(b)) needed to give the heart time to contract. This evolutionary change saves the additional energy
that would otherwise be needed to pump potassium ions back into the cell, but this Faustian “pact with the devil” is
also the reason the heart is so susceptible to conduction failure (more on this later). To explain his data on Purkinje
cells Noble [D62] postulated the existence of two inward rectifier potassium channels, one with a conductance 𝑔𝐾1

that showed voltage dependence but no significant time dependence and another with conductance 𝑔𝐾2 that showed
less severe rectification with time dependent gating similar to the HH four-gated potassium channel.

To model the cardiac action potential in Purkinje fibres (a cardiac cell specialised for rapid conduction from the atrio-
ventricular node to the apical ventricular myocardial tissue), Noble [D62] proposed two potassium channels (one of
these being the inwardly rectifying potassium channel described above and the other called the delayed potassium
channel), one sodium channel (very similar to the HH neuronal sodium channel) and one leakage channel (also similar
to the HH one).

The equations for these are as follows: (as for the HH model, time is in ms, voltages are in mV, concentrations are in
mM, conductances are in mS, currents are in µA and capacitance is in µF).

Inward rectifying iK1 potassium channel (voltage dependent only)

𝑖𝐾1 = 𝑔𝐾1 (𝑉 − 𝐸𝐾) , with 𝐸𝐾 =
RT
zF

𝑙𝑛
[𝐾+]𝑜
[𝐾+]𝑖

= 25𝑙𝑛
2.5

140
= −100mV.

𝑔𝐾1 = 1.2𝑒
−(𝑉 +90)

50 + 0.015𝑒
(𝑉 +90)

60
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Fig. 3.20: Current-voltage relations (a) around the equilibrium potentials for the potassium and sodium channels in
cardiac cells. The sodium channel is similar to the one in neurons but the two potassium channels have an inward
rectifying property that stops leakage of potassium ions out of the cell when the membrane potential (illustrated in (b))
is high during the plateau phase of the cardiac action potential.

Inward rectifying iK2 potassium channel (voltage and time dependent)1

𝑖𝐾2 = 𝑔𝐾2 (𝑉 − 𝐸𝐾)

𝑔𝐾2 = 1.2𝑛4

dn
dt

= 𝛼𝑛 (1 − 𝑛) − 𝛽𝑛.n, where 𝛼𝑛 =
−0.0001 (𝑉 + 50)

𝑒
−(𝑉 +50)

10 − 1
and 𝛽𝑛 = 0.002𝑒

−(𝑉 +90)
80 .

Note that the rate constants here reflect a much slower onset of the time dependent change in conductance than in the
HH potassium channel.

Sodium channel

𝑖Na = (𝑔Na + 140) (𝑉 − 𝐸Na) , with 𝐸Na =
RT
zF

𝑙𝑛

[︀
Na+

]︀
𝑜[︀

Na+
]︀
𝑖

= 25𝑙𝑛
140

30
= 35mV.

𝑔Na = 𝑚3h.𝑔𝑁𝑎_𝑚𝑎𝑥 where 𝑔𝑁𝑎_𝑚𝑎𝑥 = 400mS.

dm
dt

= 𝛼𝑚 (1 −𝑚) − 𝛽𝑚.m, where 𝛼𝑚 =
−0.1 (𝑉 + 48)

𝑒
−(𝑉 +48)

15 − 1
and 𝛽𝑚 =

0.12 (𝑉 + 8)

𝑒
(𝑉 +8)

5 − 1
dh
dt

= 𝛼ℎ (1 − ℎ) − 𝛽ℎ.h, where 𝛼ℎ = 0.17𝑒
−(𝑉 +90)

20 and 𝛽ℎ =
1

1 + 𝑒
−(𝑉 +42)

10

Leakage channel

𝑖leak = 𝑔𝐿 (𝑉 − 𝐸𝐿) , with 𝐸𝐿 = −60𝑚𝑉 and 𝑔𝐿 = 0.075mS.

Membrane equation2

dV
dt

= − (𝑖Na + 𝑖𝐾1 + 𝑖𝐾2 + 𝑖leak) /𝐶𝑚 where 𝐶𝑚 = 12𝜇F.

Fig. 3.21 shows the structure of the model, including separate files for units, parameters, and the three ion channels
(the two potassium channels are lumped together). We include the Nernst equations dependence on potassium and
sodium ion concentrations in order to demonstrate the use of parameter values, defined in a separate parameters file,
that are read in at the top (whole cell model) level and passed down to the individual ion channel models.

1 The second inwardly rectifying channel model was later replaced with two currents and , so that modern cardiac cell models do not include
but they do include the inward rectifier (see later section).

2 The Purkinje fibre membrane capacitance is 12 times higher than that found for squid axon. The use of 𝜇F ensures unit consistency with ms,
mV and A since F is equivalent to C.V−1 or s.A.V−1 and therefore A/ F or A/(ms. A. mV−1) on the RHS matches mV/ms on the LHS).
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Fig. 3.21: Overall structure of the Noble62 CellML model showing the encapsulation hierarchy (purple), the CellML
model imports (blue) and the other key parts (units, components & mappings) of the top level CellML model. Note
that the overall structure of the Noble62 model differs from that of the earlier HH model in that all units are defined
in a units file and imported where needed (shown by the import arrows). Also the ion concentration parameters are
defined in a parameters file and imported into the top level file but passed down to the modules that use them via the
mappings.
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The CellML Text code for all six files is shown on the following two pages. The arrows indicate the imports (appro-
priately colour coded for units, components, and parameters).

Graphical outputs from solution of the Noble 1962 model with OpenCOR for 5000ms are shown in Fig. 3.21. Inter-
pretation of the model outputs is given in the Fig. 3.21 legend. The Noble62 model was developed further by Noble
and others to include additional sodium and potassium channels, calcium channels (needed for excitation-contraction
coupling), chloride channels and various ion exchange mechanisms (Na/Ca, Na/H), co-transporters (Na/Cl, K/Cl) and
energy (ATP)-dependent pumps (Na/K, Ca) needed to model the observed beat by beat changes in intracellular ion
concentrations. These are discussed further in Section 15.

Note: The downloadable links below are links to the raw text file that may be used for copying and pasting into
OpenCOR. For the underlying CellML file that is suitable for opening with OpenCOR from disk obtain the xml file.

Raw text: Noble_1962.txt, XML file: Noble_1962.cellml.

def model Noble_1962 as
def import using "Noble62_Na_channel.xml" for

comp Na_channel using comp sodium_channel;
enddef;
def import using "Noble62_K_channel.xml" for

comp K_channel using comp potassium_channel;
enddef;
def import using "Noble62_L_channel.xml" for

comp L_channel using comp leakage_channel;
enddef;
def import using "Noble62_units.xml" for

unit mV using unit mV;
unit ms using unit ms;
unit nanoF using unit nanoF;
unit nanoA using unit nanoA;

enddef;
def import using "Noble62_parameters.xml" for

comp parameters using comp parameters;
enddef;
def map between parameters and membrane for

vars Ki and Ki;
vars Ko and Ko;
vars Nai and Nai;
vars Nao and Nao;

enddef;
def comp environment as

var t: ms {init: 0, pub: out};
enddef;
def group as encapsulation for

comp membrane incl
comp Na_channel;
comp K_channel;
comp L_channel;

endcomp;
enddef;
def comp membrane as

var V: mV {init: -85, pub: out, priv: out};
var t: ms {pub: in, priv: out};
var Cm: nanoF {init: 12000};
var Ki: mM {pub: in, priv: out};
var Ko: mM {pub: in, priv: out};
var Nai: mM {pub: in, priv: out};
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var Nao: mM {pub: in, priv: out};
var i_Na: nanoA {pub: out, priv: in};
var i_K: nanoA {pub: out, priv: in};
var i_L: nanoA {pub: out, priv: in};
ode(V, t) = -(i_Na+i_K+i_L)/Cm;

enddef;
def map between environment and membrane for

vars t and t;
enddef;
def map between membrane and Na_channel for

vars V and V;
vars t and t;
vars Nai and Nai;
vars Nao and Nao;
vars i_Na and i_Na;

enddef;
def map between membrane and K_channel for

vars V and V;
vars t and t;
vars Ki and Ki;
vars Ko and Ko;
vars i_K and i_K;

enddef;
def map between membrane and L_channel for

vars V and V;
vars i_L and i_L;

enddef;
enddef;

Raw text: Noble62_units.txt, XML file Noble62_units.cellml.

def model Noble62_units as
def unit ms as

unit second {pref: milli};
enddef;
def unit per_ms as

unit second {pref: milli, expo: -1};
enddef;
def unit mV as

unit volt {pref: milli};
enddef;
def unit mM as

unit mole {pref: milli};
enddef;
def unit per_mV as

unit volt {pref: milli, expo: -1};
enddef;
def unit per_mV_ms as

unit mV {expo: -1};
unit ms {expo: -1};

enddef;
def unit microS as

unit siemens {pref: micro};
enddef;
def unit nanoF as

unit farad {pref: nano};
enddef;
def unit nanoA as
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unit ampere {pref: nano};
enddef;

enddef;

Raw text: Noble62_parameters.txt, XML file Noble62_parameters.cellml.

def model Noble62_parameters as
def import using "Noble62_units.xml" for

unit mM using unit mM;
enddef;
def comp parameters as

var Ki: mM {init: 140, pub: out};
var Ko: mM {init: 2.5, pub: out};
var Nai: mM {init: 30, pub: out};
var Nao: mM {init: 140, pub: out};

enddef;
enddef;

Raw text: Noble62_Na_channel.txt, XML file Noble62_Na_channel.cellml.

def model sodium_ion_channel as
def import using "Noble62_units.xml" for

unit mV using unit mV;
unit ms using unit ms;
unit mM using unit mM;
unit per_ms using unit per_ms;
unit per_mV using unit per_mV;
unit per_mV_ms using unit per_mV_ms;
unit microS using unit microS;
unit nanoA using unit nanoA;

enddef;
def group as encapsulation for

comp sodium_channel incl
comp sodium_channel_m_gate;
comp sodium_channel_h_gate;

endcomp;
enddef;
def comp sodium_channel as

var V: mV {pub: in, priv: out};
var t: ms {pub: in, priv: out};
var g_Na_max: microS {init: 400000};
var g_Na: microS;
var E_Na: mV;
var m: dimensionless {priv: in};
var h: dimensionless {priv: in};
var Nai: mM {pub: in};
var Nao: mM {pub: in};
var RTF: mV {init: 25};
var i_Na: nanoA {pub: out};
E_Na = RTF*ln(Nao/Nai);
g_Na = pow(m, 3{dimensionless})*h*g_Na_max;
i_Na = (g_Na+140{microS})*(V-E_Na);

enddef;
def comp sodium_channel_m_gate as

var V: mV {pub: in};
var t: ms {pub: in};
var m: dimensionless {init: 0.01, pub: out};
var alpha_m: per_ms;
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var beta_m: per_ms;
alpha_m = -0.10{per_mV_ms}(V+48{mV})

/(exp(-(V+48{mV})/15{mV})-1{dimensionless});
beta_m = 0.12{per_mV_ms}(V+8{mV})

/(exp((V+8{mV})/5{mV})-1{dimensionless});
ode(m, t)=alpha_m*(1{dimensionless}-m)-beta_m*m;

enddef;
def comp sodium_channel_h_gate as

var V: mV {pub: in};
var t: ms {pub: in};
var h: dimensionless {init: 0.8, pub: out};
var alpha_h: per_ms;
var beta_h: per_ms;
alpha_h = 0.17{per_ms}exp(-(V+90{mV})/20{mV});
beta_h = 1.00{per_ms}

/(1{dimensionless}+exp(-(V+42{mV})/10{mV}));
ode(h, t) = alpha_h*(1{dimensionless}-h)-beta_h*h;

enddef;
def map between sodium_channel
and sodium_channel_m_gate for
vars V and V;
vars t and t;
vars m and m;

enddef;
def map between sodium_channel
and sodium_channel_h_gate for
vars V and V;
vars t and t;
vars h and h;

enddef;
enddef;

Raw text: Noble62_K_channel.txt, XML file Noble62_K_channel.cellml.

def model potassium_ion_channel as
def import using "Noble62_units.xml" for

unit mV using unit mV;
unit ms using unit ms;
unit mM using unit mM;
unit per_ms using unit per_ms;
unit per_mV using unit per_mV;
unit per_mV_ms using unit per_mV_ms;
unit microS using unit microS;
unit nanoA using unit nanoA;

enddef;
def group as encapsulation for

comp potassium_channel incl
comp potassium_channel_n_gate;

endcomp;
enddef;
def comp potassium_channel as

var V: mV {pub: in, priv: out};
var t: ms {pub: in, priv: out};
var n: dimensionless {priv: in};
var Ki: mM {pub: in};
var Ko: mM {pub: in};
var RTF: mV {init: 25};
var E_K: mV;
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var g_K1: microS;
var g_K2: microS;
var i_K: nanoA {pub: out};
E_K = RTF*ln(Ko/Ki);
g_K1 = 1200{microS}exp(-(V+90{mV})/50{mV})

+15{microS}exp((V+90{mV})/60{mV});
g_K2 = 1200{microS}pow(n, 4{dimensionless});
i_K = (g_K1+g_K2)*(V-E_K);

enddef;
def comp potassium_channel_n_gate as

var V: mV {pub: in};
var t: ms {pub: in};
var n: dimensionless {init: 0.01, pub: out};
var alpha_n: per_ms;
var beta_n: per_ms;
alpha_n = -0.0001{per_mV_ms}(V+50{mV})

/(exp(-(V+50{mV})/10{mV})-1{dimensionless});
beta_n = 0.0020{per_ms}exp(-(V+90{mV})/80{mV});
ode(n,t)= alpha_n*(1{dimensionless}-n)-beta_n*n;

enddef;
def map between environment
and potassium_channel for
vars V and V;
vars t and t;

enddef;
def map between potassium_channel and
potassium_channel_n_gate for
vars V and V;
vars t and t;
vars n and n;

enddef;
enddef;

Raw text: Noble62_L_channel.txt, XML file Noble62_L_channel.cellml.

def model leakage_ion_channel as
def import using "Noble62_units.xml" for

unit mV using unit mV;
unit ms using unit ms;
unit microS using unit microS;
unit nanoA using unit nanoA;

enddef;
def comp leakage_channel as

var V: mV {pub: in};
var g_L: microS {init: 75};
var E_L: mV {init: -60};
var i_L: nanoA {pub: out};
i_L = g_L*(V-E_L);

enddef;
enddef;

We have now covered all existing features of CellML and OpenCOR. But, most importantly, you have learned ‘best
practice’ for building CellML models, including encapsulation of sub-components and a modular approach in which
units, parameters and model components are defined in separate files that are imported into a composite model.

The final key concept is that of reusing existing modules, defined using the previous concepts.
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Fig. 3.22: Output from the Noble62 model (OpenCOR link). Top panel is 𝑉 (𝑡), the cardiac action potential. The next
panel has the two membrane ion channel currents 𝑖Na (𝑡) and 𝑖𝐾 (𝑡). Note that 𝑖Na (𝑡) has a very brief downward (i.e.
inward current) spike that is triggered when the membrane voltage reaches about -70mV. This is caused by the huge
increase in sodium channel conductance 𝑔Na (𝑡) shown in the panel below associated with the simultaneous opening
of the m-gate and closing of the h-gate (5th panel down). The resting state of about -80mV in the top panel is set
by the potassium equilibrium (Nernst) potential via the open potassium channels. As can be seen from the 4th and
bottom panels, it is the closing of the time-dependent potassium n-gate and the corresponding decline of potassium
conductance that, with a small background leakage current 𝑖𝐿 (𝑡), leads to the membrane potential rising from -80mV
to the threshold for activation of the sodium channel (note the dotted red line showing the point when n(t) reaches a
minimum). Later cardiac cell models include additional ion channels that directly affect the heart rate by controlling
this rise.
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4. A model of the nerve action potential: Introducing CellML imports introduces the mechanism by which existing
modules can be reused in CellML models.

When describing your model it is useful to separate the mathematical model from its instaniation with a specific set of
parameter values. This allows the model to be reused with different parameter sets for different purposes, including
different simulation protocols, etc. Furthermore, rather than continually redefining the same set if units, it is better
practice to simply define your units once and reuse their definition as required. Potentially even defining a standard
set of units for a research group or collaboration to use and storing that in the repository for everyone to make use of.

5. In A model of the cardiac action potential: Importing units and parameters we demonstrate the separation of
model parameters and reuse of a common units definition.

Collaboration, versioning, discovery

The Physiome Model Repository and the link to bioinformatics

The Physiome Model Repository (PMR) [LCPF08] is the main online repository for the IUPS Physiome Project,
providing version and access controlled repositories, called workspaces, for users to store their data. Currently there
are over 700 public workspaces and many private workspaces in the repository. PMR also provides a mechanism
to create persistent access to specific revisions of a workspace, termed exposures. Exposure plugins are available
for specific types of data (e.g. CellML or FieldML documents) which enable customizable views of the data when
browsing the repository via a web browser, or an application accessing the repository’s content via web services.

More complete documentation describing how to use PMR is available in the PMR documentation: https://models.
physiomeproject.org/docs.

The CellML models on models.physiomeproject.org are listed under 20 categories, shown below: (numbers of expo-
sures in each category are given besides the bar graph, correct as at early 2016)

Browse by category

Calcium Dynamics 140
Cardiovascular Circulation 60
Cell Cycle 38
Cell Migration 2
Circadian Rhythms 22
Electrophysiology 230
Endocrine 60
Excitation-Contraction Coupling 22
Gene Regulation 12
Hepatology 29
Immunology 55
Ion transport 13
Mechanical Constitutive Laws 19
Metabolism 86
Myofilament Mechanics 22
Neurobiology 33
pH regulation 2
PKPD 11
Signal Transduction 120
Synthetic Biology 6
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Note that searching of models can be done anywhere on the site using the search box on the upper right hand corner.
An important benefit of ensuring that the models on the PMR are annotated is that models can then be retrieved by a
web-search using any of the annotated terms in the models.

To illustrate the features of PMR, click on the Hund, Rudy 2004 (Basic) model in the alphabetic listing of models
under the Electrophysiology category.

Fig. 3.23: The Physiome Model Repository exposure page for the basic Hund-Rudy 2004 model.

The section labelled ‘Model Structure’ contains the journal paper abstract and often a diagram of the model1. This is
shown for the Hund-Rudy 2004 model in Fig. 3.24. This model, with over 22 separate protein model components, is
also a good example of why it is important to build models from modular components [CMEJ08], and in particular
the individual ion channels for electrophysiology models.

There is a list of ‘Views Available’ for the CellML model on the right hand side of the exposure page. The function of
each of these views is as follows:

Views Available

Documentation - Takes you to the main exposure page.

Model Metadata - Lists metadata including authors, title, journal, Pubmed ID and model annotations.

Model Curation - Provides the curation status of the model. Note: this is soon to be updated.

Mathematics - Displays all the mathematical equations contained in the model.

Generated Code - Various codes (C, C-IDA, F77, MATLAB or Python) generated from the model.

Cite this model - Provides details on how to cite use of the CellML model.

Source view - Gives a full listing of the XML code for the model.

1 These are currently hand drawn SVG diagrams but the plan is to automatically generate them from the model annotation and also (at some
stage!) to animate them as the model is executed.
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Fig. 3.24: A diagrammatic representation of the Hund-Rudy 2004 model.

Launch with OpenCOR - Opens the model (or simulation experiment) in OpenCOR.

Note that CellML models are available under a Creative Commons Attribution 3.0 Unported License2. This means
that you are free to:

• Share — copy and redistribute the material in any medium or format

• Adapt — remix, transform, and build upon the material

for any purpose, including commercial use.

The next stage of content development for PMR is to provide a list of the modular components of these models each
with their own exposure. For example, models for each of the individual ion channels used in the publication-based
electrophysiological models will be available as standalone models that can then be imported as appropriate into a new
composite model. Similarly for enzymes in metabolic pathways and signalling complexes in signalling pathways, etc.
Some examples of these protein modules are:

Sodium/hydrogen exchanger 3 https://models.physiomeproject.org/e/236/

Thiazide-sensitive Na-Cl cotransporter https://models.physiomeproject.org/e/231/

Sodium/glucose cotransporter 1 https://models.physiomeproject.org/e/232/

Sodium/glucose cotransporter 2 https://models.physiomeproject.org/e/233/

Note that in each case, as well as the CellML-encoded mathematical model, links are provided (see Fig. 3.25) to
the UniProt Knowledgebase for that protein, and to the Foundational Model of Anatomy (FMA) ontology (via the
EMBLE-EBI Ontology Lookup Service) for information about tissue regions relevant to the expression of that protein
(e.g. Proximal convoluted tubule, Apical plasma membrane; Epithelial cell of proximal tubule; Proximal straight
tubule). Similar facilities are available for SMBL-encoded biochemical reaction models through the Biomodels
database [AYY].

2 https://creativecommons.org/licenses/by/3.0/
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Fig. 3.25: The PMR workspace for the Thiazide-sensitive Na-Cl cotransporter. Bioinformatic data for this model is
accessed via the links under the headings highlight by the arrows and include Protein (labelled A) and the model
Location (labelled B). Other information is as already described for the Hund-Rudy 2004 model.
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Using PMR with OpenCOR

In addition to the PMR window for browsing public exposures directly in OpenCOR (PMR window) OpenCOR has
the ability for users to directly create and access their workspaces in PMR.

Note: It is a feature of PMR that all data is persistent and permanent. As such, any workspaces created on the main
instance of PMR (https://models.physiomeproject.org/) can not be deleted. For the purposes of teaching, we have an
alternate instance of PMR (https://teaching.physiomeproject.org/) which is periodically cleared out and synschronised
from the main instance. Using the teaching instance allows you to play around without the worry of things being
permanent.

1. Register for a user account on the teaching instance of PMR.

In order to make use of the teaching instance of PMR, you must first have an account for that instance of the repository.
For teaching purposes it is best to register a new account. This can be done by first opening this link in your browser:
https://teaching.physiomeproject.org. Then click the Log in button on (shown in Fig. 3.26) then the registration form
link.

Fig. 3.26: The log in button for the teaching instance of PMR.

After filling in the names and email fields and clicking Register you will receive an email inviting you to confirm and
set a password. Once that is completed you can then log in. Clicking on My Workspaces will take you to a listing of
all your workspaces and provides access to the the Workspace creation form.

2. Create a new workspace, in this example the title ‘Test workspace’ has been used.

The PMR Workspaces window

A window labelled PMR workspaces is available in OpenCOR (see Fig. 3.27). If it is not currently visible it can be
selected via View → Windows → PMR workspaces (or perhaps the Ctrl-space shortcut).

3. Set preferences.

Clicking the preferences button (Fig. 3.27) presents a Preferences dialog box with three settings: PMR instance, Name
and Email. For the current purpose choose https://teaching.physiomeproject.org for the first and enter your name and
email. These are used to identify you as the author of changes you submit back to the repository (view an example
history).

4. Log into PMR from OpenCOR.

Before you can view private information or submit changes to PMR you must first log in to PMR from OpenCOR
and grant OpenCOR permission to use your account. You accomplish this by clicking on the top right button in the
PMR Workspaces window and then logging in with your new user name and password (created in step 1). Then grant
access for OpenCOR to gain access to your PMR workspaces. The PMR workspaces window will then show all your
workspaces, which should currently consist of the new workspace created in step 2. Note that using the same top right
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Fig. 3.27: PMR workspace shown on the left hand panel in OpenCOR. The preferences button is highlighted.

button you can log off - and when you next authenticate you will again be asked to grant access but this time without
needing to login with your password.

Right clicking on the workspace name brings up a list of options for that workspace, the first being to view the
workspace within PMR (in the web browser). Another option allows you to clone a workspace to your local disk - this
will create a copy of the workspace on your local computer in which you are able to make changes.

5. Clone your test workspace

Using the Clone... option from the right-click menu on the workspace you created in step 2, clone the workspace to
your PC. When doing this you will need to provide the folder in which you want to store the workspace contents -
make sure you remember where this folder is!

6. Save a CellML model to your workspace.

A CellML file opened in OpenCOR (choose any model you have access to) can be saved (File → Save As...) to the
folder you created for the cloned workspace. Once you have saved a model you will see the file appear under the
workspace’s folder in the PMR Workspaces window. Note that the file appears under the workspace with a red patch
on the logo indicating the the file is not yet flagged to upload. To upload the file to PMR, you need to :guilabel‘Stage‘
the file by right-clicking the file and choosing Stage (the red patch then turns green) followed by Commit from the
right-click menu on the workspace folder. This will ask you to provide a description of the change you would like
to submit to PMR. When you now choose Pull And Push from the workspace menu, the staged changes will actually
be submitted to PMR and you will see the file appear on the refreshed browser window. The file icon in the PMR
Workspaces window will be shown without the red or green patch. Fig. 3.28 shows two CellML files that have been
uploaded to PMR.

One of the main reasons to encode your mathematical models following the principles described in the previous
sections is to make the model available for future scientists (again, including yourself!) to utilise the model in novel
investigations. The Physiome Model Repository (PMR) has been developed to provide scientists with a suitable
repository for sharing their work with the community. Full details are provided in the PMR documentation, but here
we highlight some PMR capabilities.

6. We have previously introduced the various ways to load models from PMR into OpenCOR. In The Physiome
Model Repository and the link to bioinformatics we illustrate some of the extra information that is avaialble via
the PMR web interface.

7. Choosing your favourite area of physiology, see if you can discover an interesting model in PMR and load it into
OpenCOR to explore. Do you find this a more comprehensive way to understand the model than only reading
the source literature?
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Fig. 3.28: Two CellML files (New - BG Fluids model 3.cellml and new - kidney.cellml) have
been uploaded from OpenCOR to PMR and can be seen in the PMR workspace on the browser window on the right.
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The primary unit of information in PMR is the workspace. Each workspace is a version controlled repository which
is permanently and persistently available, with each resource in the workspace assigned a unique identifier for each
version of the resource submitted to the repository.

8. In Using PMR with OpenCOR we present OpenCOR’s capabilties for directly working with workspaces in PMR.

9. Compare the method described in step 8 with the previous method scientists had to follow in order to get models
into PMR. Do you see why most scientists would prefer to email their models to Andre and let him add them to
the repository?

Extra for experts: if you look through the PMR documentation you will be able to find information on how to
submit your workspaces to make them public, share them directly with collaborators, and make exposures for specific
revisions of the workspace.

A bond graph-based method for representing physiology

A new field of research that has emerged recently is the application of bond graph theory to the field of systems biology
and physiology. This is providing the theoretical framework to guide the development of core modules that can be
arbitrarily combined to capture a wide range of physiological phenomena. Combining this framework with CellML
has started to provide an extremely powerful technology for both defining core modules spanning the required physics
and the methods for integrating these modules into models of physiological systems.

As this is a new and rapidly evolving field of research, the documentation is still being developed. This section of the
DTP Computational Physiology module will be largely be taught using powerpoint slides that will be made available
on the day.

Some references that are relevant to this work are given here for convenience.

• Paynter H. Analysis and Design of Engineering Systems (MIT, Cambridge, Mass., 1961).

• Oster G, Perelson A, and Katchalsky A. 1971. Network thermodynamics. Nature (Lond.). 234:393 (link).

• Gawthrop PJ and Crampin EJ. Energy based analysis of biochemical cycles using bond graphs. Proc. R. Soc. A
470:20140459, 2014 (link).

• Gawthrop PJ and Crampin EJ. Modular bond-graph modelling and analysis of biomolecularsystems. IET Sys-
tems Biology, 2015 (link).

• Gawthrop PJ, Cursons J and Crampin EJ. Hierarchical bond graph modelling of biochemical networks. Proc.
R. Soc A, 471(2184), 2015 (link).

• Gawthrop PJ, Siekmann I, Kameneva T, Saha S, Ibbotson MR and Crampin EJ. The energetic cost of
the action potential: bond graph modelling of electrochemical energy transduction in excitable membranes.
arXiv:1512.00956 (link).

Example models

A collection of models is available for this section of the module. The following steps can be used to create your own
copy of these models for use in the tutorial.

1. Go to http://teaching.physiomeproject.org/workspace/464 in your web browser.

2. Make sure you are logged in to the teaching instance of PMR.

3. Click on Fork in the workspace menu, followed by the Fork button. This will create your own private copy of
the workspace containing these example models.

4. In OpenCOR, make sure you are logged into the teaching instance of PMR.
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5. You might need to click the Reload button (green arrow) to update the window to show your copy of the Example
bond graph models workspace.

6. Right-click on the example bond graph models workspace folder and Clone... the workspace (as per step 5).

You will now have a copy of the example models on your computer.

OpenCOR tutorial

For reference, the complete tutorial on CellML, OpenCOR, and PMR (from which the material presented above is
reused) is given here. It is not directly part of the DTP computational physiology module, but does provide some
useful information and we still need to better extract the bits we need.

Tutorial on CellML, OpenCOR & the Physiome Model Repository

Note: This tutorial originated from a translation from a single Word document. Aspects of formatting and presentation
may need further work. For reference, the original tutorial is available here: OpenCOR-Tutorial-v17.pdf.

This tutorial shows you how to install and run the OpenCOR1 software [APJ15], to author and edit CellML models2

[DPPJ03] and to use the Physiome Model Repository (PMR)3 [eal11]. We start by giving a brief background on the
VPH-Physiome project. We then create a simple model, save it as a CellML file and run model simulations. We next try
opening existing CellML models, both from a local directory and from the Physiome Model Repository. The various
features of CellML4 and OpenCOR are then explained in the context of increasingly complex biological models. A
simple linear first order ODE model and a nonlinear third order model are introduced. Ion channel gating models
are used to introduce the way that CellML handles units, components, encapsulation groups and connections. More
complex potassium and sodium ion channel models are then developed and subsequently imported into the Hodgkin-
Huxley 1952 squid axon neural model using the CellML model import facility. The Noble 1962 model of a cardiac
cell action potential is used to illustrate importing of units and parameters. The tutorial finishes with sections on model
annotation and the facilities available on the CellML website and the Physiome Model Repository to support model
development, including the links to bioinformatic databases. There is a strong emphasis in the tutorial on establishing
‘best practice’ in the creation of CellML models and using the PMR resources, particularly in relation to modular
approaches (model hierarchies) and model annotation.

Note: This tutorial relies on readers having some background in algebra and calculus, but tries to explain all math-
ematical concepts beyond this, along with the physical principles, as they are needed for the development of CellML
models.5

1 OpenCOR is an open source, freely available, C++ desktop application written by Alan Garny at INRIA with funding support from the
Auckland Bioengineering Institute (http://www.abi.auckland.ac.nz) and the NIH-funded Virtual Physiological Rat (VPR) project led by Dan Beard
at the University of Michigan (http://virtualrat.org).

2 For an overview and the background of CellML see http://www.cellml.org. This project is led by Poul Nielsen and David (Andre) Nickerson
at the Auckland (University) Bioengineering Institute (ABI).

3 https://models.physiomeproject.org. The PMR project is led by Tommy Yu at the ABI.
4 For details on the specifications of CellML1.0 see http://www.cellml.org/specifications/cellml_1.0.
5 Please send any errors discovered or suggested improvements to p.hunter@auckland.ac.nz.
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Background to the VPH-Physiome project

To be of benefit to applications in healthcare, organ and whole organism physiology
needs to be understood at both a systems level and in terms of subcellular function
and tissue properties. Understanding a re-entrant arrhythmia in the heart, for example,
depends on knowledge of not only numerous cellular ionic current mechanisms and
signal transduction pathways, but also larger scale myocardial tissue structure and the
spatial variation in protein expression. As reductionist biomedical science succeeds in
elucidating ever more detail at the molecular level, it is increasingly difficult for phys-
iologists to relate integrated whole organ function to underlying biophysically detailed
mechanisms that exploit this molecular knowledge. Multi-scale computational mod-
elling is used by engineers and physicists to design and analyse mechanical, electrical
and chemical engineering systems. Similar approaches could benefit the understanding
of physiological systems. To address these challenges and to take advantage of bio-
engineering approaches to modelling anatomy and physiology, the International Union
of Physiological Sciences (IUPS) formed the Physiome Project in 1997 as an interna-
tional collaboration to provide a computational framework for understanding human
physiology1.

Primary Goals

One of the primary goals of the Physiome Project [PJ04] has been to promote the
development of standards for the exchange of information between models. The first of
these standards, dealing with time varying but spatially lumped processes, is CellML
[VarYY]. The second (dealing with spatially and time varying processes) is FieldML
[CPJ09][P13]2. A further goal of the Physiome Project has been the development
of open source tools for creating and visualizing standards-based models and running
model simulations. OpenCOR is the latest in a series of software projects aimed at
providing a modelling environment for CellML models. Similar tools exist for FieldML
models.

Following the publication of the STEP3 (Strategy for a European Physiome) Roadmap
in 2006, the European Commission in 2007 initiated the Virtual Physiological Human
(VPH) project [ea13]. A related US initiative by the Interagency Modeling and Anal-
ysis Group (IMAG) began in 20034. These projects and similar initiatives are now
coordinated and are collectively referred to here as the ‘VPH-Physiome’ project5. The
VPH-Institute6 was formed in 2012 as a virtual organisation to providing strategic lead-
ership, initially in Europe but now globally, for the VPH-Physiome Project.

1 www.iups.org. The IUPS President, Denis Noble from Oxford University, and Jim Bassingthwaighte from the University of Washington in
Seattle have been two of the driving forces behind the Physiome Project. Peter Hunter from the University of Auckland was appointed Chair of
the newly created Physiome Commission of the IUPS in 2000. The IUPS Physiome Committee, formed in 2008, was co-chaired by Peter Hunter
and Sasha Popel (JHU) and is now chaired by Andrew McCulloch from UCSD. The UK Wellcome Trust provided initial support for the Physiome
Project through the Heart Physiome grant awarded in 2004 to David Paterson, Denis Noble and Peter Hunter.

2 CellML began as a joint public-private initiative in 1998 with funding by the US company Physiome Sciences (CEO Jeremy Levin), before
being launched under IUPS as a fully open source project in 1999.

3 The STEP report, led by Marco Viceconte (University of Sheffield, UK), is available at www.europhysiome.org/roadmap.
4 This coordinates various US Governmental funding agencies involved in multi-scale bioengineering modeling research including NIH,

NSF, NASA, the Dept of Energy (DoE), the Dept of Defense (DoD), the US Dept of Agriculture and the Dept of Veteran Affairs. See
www.nibib.nih.gov/Research/MultiScaleModeling/IMAG. Grace Peng of NHBIB leads the IMAG group.

5 Other significant contributions to the VPH-Physiome project have come from Yoshi Kurachi in Japan (www.physiome.jp), Stig Omholt in
Norway (www.ntnu) and Chae-Hun Leem in Korea (www.physiome.or.kr).

6 www.vph-institute.org. Formed in 2012, the inaugural Director was Marco Viceconti. The current Director is Adriano Henney. The inaugural
and current President of the VPH-Institute is Denis Noble.
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A simple first order ODE

The simplest example of a first order ODE is

dy
dt

= −𝑎𝑦 + 𝑏

with the solution

𝑦 (𝑡) =
𝑏

𝑎
+

(︂
𝑦 (0) − 𝑏

𝑎

)︂
.𝑒−𝑎𝑡,

where 𝑦 (0) or 𝑦0, the value of 𝑦 (𝑡) at 𝑡 = 0, is the initial condition. The final steady
state solution as 𝑡 → ∞ is 𝑦 ( 𝑡|∞) = 𝑦∞ = 𝑏

𝑎 (see Figure 6). Note that 𝑡 = 𝜏 = 1
𝑎 is

called the time constant of the exponential decay, and that

𝑦 (𝜏) =
𝑏

𝑎
+

(︂
𝑦 (0) − 𝑏

𝑎

)︂
.𝑒−1.

At 𝑡 = 𝜏 , 𝑦 (𝑡) has therefore fallen to 1
𝑒 (or about 37%) of the difference between the initial (𝑦 (0)) and final steady

state ( 𝑦 (∞)) values1.

Fig. 3.29: Solution of 1st order equation.

Choosing parameters 𝑎 = 𝜏 = 1; 𝑏 = 2 and 𝑦 (0) = 5, the
CellML Text for this model is

def model first_order_model as
def comp main as

var t: dimensionless {init: 0};
var y: dimensionless {init: 5};
var a: dimensionless {init: 1};
var b: dimensionless {init: 2};
ode(y,t)=-a*y+b;

enddef;
enddef;

The solution by OpenCOR is shown in Fig. 3.30(a) for
these parameters (a decaying exponential) and in Fig.
3.30(b) for parameters 𝑎 = 1; 𝑏 = 5 and 𝑦 (0) = 2 (an
inverted decaying exponential). Note the simulation panel
with Ending point=10, Point interval=0.1. Try putting
𝑎 = −1.

These two solutions have the same exponential time con-
stant (𝜏 = 1

𝑎 = 1) but different initial and final (steady
state) values.

The exponential decay curve shown on the left in Fig. 3.30
is a common feature of many models and in the case of
radioactive decay (for example) is a statement that the rate of decay (− dy

dt ) is proportional to the current amount of
substance (𝑦). This is illustrated on the NZ$100 note (should you be lucky enough to possess one), shown in Figure
8.

The Lorenz attractor

An example of a third order ODE system (i.e. three 1st order equations) is the Lorenz equations1.
1 It is often convenient to write a first order equation as 𝜏 dy

dt = −𝑦 + 𝑦∞, so that its solution is expressed in terms of time constant 𝜏 , initial

condition 𝑦0 and steady state solution 𝑦∞ as: 𝑦 (𝑡) = 𝑦∞ + (𝑦0 − 𝑦∞) .𝑒−
𝑡
𝜏 .

1 http://en.wikipedia.org/wiki/Lorenz_system
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Fig. 3.30: OpenCOR output 𝑦 (𝑡) for the simple ODE model with parameters (a) 𝑎 = 1; 𝑏 = 2 and 𝑦 (0) = 5
(OpenCOR link), and (b) 𝑎 = 1; 𝑏 = 5 and 𝑦 (0) = 2. The red arrow indicates the point at which the trace reaches
the time constant 𝜏 (𝑒−1 or ≈ 37% of the difference between the initial and final solution values). The black arrows
indicate the initial and final (steady state) solutions. Note that the parameters on the left have been reset to their initial
values for this figure - normally they would be at their final solution values.

Fig. 3.31: The exponential curve representing the naturally occurring radioactive decay explained by the New Zealand
Noble laureate Sir Ernest Rutherford - best known for ‘splitting the atom’. This may be the only bank note depicting
the mathematical solution of a first order ODE.
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Fig. 3.32: CellML Text code for the Lorenz equations.

This system has three equations:

dx
dt

= 𝜎 (𝑦 − 𝑥)

dy
dt

= 𝑥 (𝜌− 𝑧) − 𝑦

dz
dt

= 𝑥𝑦 − 𝛽𝑧

where 𝜎, 𝜌 and 𝛽 are parameters.

The CellML Text code entered for these
equations is shown in Fig. 3.32 with pa-
rameters

𝜎 = 10, 𝜌 = 28, 𝛽 = 8/3 = 2.66667

and initial conditions

𝑥 (0) = 𝑦 (0) = 𝑧 (0) =1.

Solutions for 𝑥 (𝑡), 𝑦 (𝑥) and 𝑧 (𝑥), cor-
responding to the time integration pa-
rameters shown on the LHS, are shown
in Fig. 3.33. Note that this system
exhibits ‘chaotic dynamics’ with small
changes in the initial conditions leading
to quite different solution paths.

This example illustrates the value of
OpenCOR’s ability to plot variables as
they are computed. Use the Simula-
tion Delay wheel to slow down the plot-
ting by a factor of about 5-10,000 - in
order to follow the solution as it spi-
rals in ever widening trajectories around
the left hand wing of the attractor be-
fore coming close to the origin that then
sends it off to the right hand wing of the attractor.

Solutions to the Lorenz equations are organised by the 2D ‘Lorenz manifold’. This surface has a very beautiful shape
and has become an art form - even rendered in crochet!2 (See Fig. 3.34).

Note: The simulation presented in Fig. 3.33 can be loaded direction into OpenCOR using this link.

Exercise for the reader

Another example of intriguing and unpredictable behaviour from a simple deterministic ODE system is the ‘blue sky
catastrophe’ model [JH02] defined by the following equations:

dx
dt

= 𝑦

dy
dt

= 𝑥− 𝑥3 − 0.25𝑦 + 𝐴 sin 𝑡

2 http://www.math.auckland.ac.nz/~hinke/crochet/

110 Chapter 3. Introduction to (ODE) Modelling Best Practices

http://www.math.auckland.ac.nz/~hinke/crochet/


DTP Computational Physiology Documentation, Release 2017.02

Fig. 3.33: Solutions of the Lorenz equations. Note that the parameters on the left have been reset to their initial values
for this figure – normally they would be at their final solution values.

Fig. 3.34: The crocheted Lorenz manifold made by Professors Hinke Osinga and Bernd Krauskopf of the Mathematics
Department at the University of Auckland, New Zealand.
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with parameter 𝐴 = 0.2645 and initial conditions 𝑥 (0) = 0.9, 𝑦 (0) = 0.4. Run to 𝑡 = 500 with ∆𝑡 = 0.01 and
plot 𝑥 (𝑡) and 𝑦 (𝑥) (OpenCOR link). Also try with 𝐴 = 0.265 to see how sensitive the solution is to small changes in
parameter values.

Model annotation

One of the most powerful features of CellML is its ability to import models. This means that complex models can be
built up by combining previously defined models. There is a potential problem with this process, however, since the
imported models (often developed by completely different modellers) may represent the same biological or biophysical
entity with different expressions. The potassium channel model in A model of the potassium channel: Introducing
CellML components and connections, for example, represents the intracellular concentration of potassium as ‘Ki’
(see the CellML Text code Potassium_ion_channel.cellml) but another model involving the intracellular potassium
concentration may use a different expression.

The solution to this dilemma is to annotate the CellML variables with names from controlled vocabularies that have
been agreed upon by the relevant scientific community. In this case we may simply want to annotate Ki as ‘the
concentration of potassium in the cytosol’. This expression, however, refers to three distinct entities: concentration,
potassium and cytosol. We might also want to specify that we are referring to the cytosol of a neuron . . . and that
the neuron comes from a particular part of a giant squid (the experimental animal used by Hodgkin and Huxley).
Annotations can clearly get very complicated!

What comes to our rescue here is that most scientific communities have developed controlled vocabularies together
with the relationships between the terms of that vocabulary – called ontologies. Furthermore relationships can always
be expressed in the form subject-predicate-object. E.g. Ki is-the-concentration-of potassium is one relationship and
potassium in-the cytosol is another. Each object can become the subject of another expression. We could continue,
for example, with cytosol of-the neuron, neuron of-the squid and so on. The terms s-the-concentration-of, in-the
and of-the are the predicates and these semantically rich expressions too have to come from controlled vocabularies.
Each of these subject-predicate-object expressions is called an RDF triple and the World Wide Web consortium1 has
established a framework called the Resource Description Framework (RDF2) to support these.

CellML models therefore contain two parts, one dealing with syntax (the MathML definition of the models together
with the structure of components, connections, groups, units, etc) as discussed in previous sections, and one dealing
with semantics (the meanings of the terms used in the models) discussed in this section3. This latter is also referred
to as metadata – i.e. data about data.

In the CellML metadata specification4 the first RDF subject of a triple is a CellML element (e.g. a variable such
as ‘Ki’), the RDF predicate is chosen from the Biomodels Biological Qualifiers5 list, and the RDF object is a URI
(the string of characters used to identify the name of a resource6). Establishing these RDF links to biological and
biophysical meaning is the goal of annotation.

Note the different types of subject/object used in the RDF triples: the concentration is a biophysical entity, potassium
is a chemical entity, the cytosol is an anatomical entity. In fact, to cover all the terminology used in the models, CellML
uses five separate ontologies:

• ChEBI (Chemical Entities of Biological Interest) www.ebi.ac.uk/chebi

• GO (Gene Ontology) www.geneontology.org

• FMA (Foundation Model of Anatomy) fma.biostr.washington.edu/projects/fm/

1 Referred to as W3C – see www.w3.org
2 www.w3.org/RDF
3 For details on the annotation plugin see http://opencor.ws/user/plugins/editing/CellMLAnnotationView.html
4 See http://www.cellml.org/specifications/metadata/ and http://www.cellml.org/specifications/metadata/mcdraft
5 http://co.mbine.org/standards/qualifiers
6 http://en.wikipedia.org/wiki/Uniform_resource_identifier
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• Cell type ontology code.google.com/p/cell-ontology

• OPB sbp.bhi.washington.edu/projects/the-ontology-of-physics-for-biology-opb

These ontologies are available through OpenCOR’s annotation facilities as explained below.

Fig. 3.35: Clicking on CellML Annotation lists the
CellML components with their variables ready for an-
notation.

If we now go back to the potassium ion channel CellML model
and, under Editing, click on CellML Annotation, the various
elements of the model (Units, Components, Variables, Groups
and Connections) are displayed (see Fig. 3.35). If you right
click on any of them a popup menu will appear, which you can
use to expand/collapse all the child nodes, as well as remove
the metadata associated with the current CellML element or
the whole CellML file. Expanding Components lists all the
components and their variables. To annotate the potassium
channel component, select it and specify a Qualifier from the
list displayed:

bio:encodes, bio:isPropertyOf
bio:hasPart, bio:isVersionOf
bio:hasProperty, bio:occursIn
bio:hasVersion, bio:hasTaxon
bio:is, model:is
bio:isDescribedBy, model:isDerivedFrom
bio:isEncodedBy, model:isDescribedBy
bio:isHomologTo, model:isInstanceOf
bio:isPartOf, model:hasInstance

If you do not know which qualifier to use, click on the but-
ton to get some information about the current qualifier (you
must be connected to the internet) and go through the list of
qualifiers until you find the one that best suits your needs.
Here, we will say that you want to use bio:isVersionOf. Fig.
3.36 shows the information displayed about this qualifier.

Now you need to retrieve some possible ontological terms
to describe the potassium_channel component. For this you
must enter a search term, which in our case is ‘potassium
channel’ (note that regular expressions are supported7). This
returns 24 possible ontological terms as shown in Fig. 3.37.
The voltage-gated potassium channel complex is the most ap-
propriate. Clicking on the GO identifier link shown provides
more information about this term (see Fig. 3.38).

Now, assuming that you are happy with your choice of onto-
logical term, you can associate it with the potassium_channel

component by clicking on its corresponding button which then displays the qualifier, resource and ID information

in the middle panel as shown in Fig. 3.37. If you make a mistake, this can be removed by clicking on the button.

The first level annotation of the potassium_channel component has now been achieved. The content of the three terms
in the RDF triple are shown in Fig. 3.39, along with the annotation for the variables Ki and Ko.

def comp {id_000000001} potassium_channel as
var V: millivolt {pub: in, priv: out};
var t: millisec {pub: in, priv: out};

7 http://en.wikipedia.org/wiki/Regular_expression
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Fig. 3.36: The qualifiers are displayed from the top right menu. Clicking on the most appropriate one (bio:isVersionOf)
gives more information about this qualifier in the bottom panel.
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Fig. 3.37: The ontological terms listed when ‘potassium channel’ is entered into the search box next to Term.

var n: dimensionless {priv: in};
var i_K: microA_per_cm2 {pub: out};
var g_K: milliS_per_cm2 {init: 36};
var {id_000000002} Ki: mM {init: 90};
var {id_000000003} Ko: mM {init: 3};
var RTF: millivolt {init: 25};
var E_K: millivolt;
var K_conductance: milliS_per_cm2 {pub: out};

E_K = RTF*ln(Ko/Ki);
K_conductance = g_K*pow(n, 4{dimensionless});
i_K = K_conductance*(V-E_K);

enddef;

When saved (the CellML Annotation tag will appear un-grayed), the result of these annotations is to add metadata to
the CellML file. If you switch to the CellML Text view you will see that the elements that have been annotated appear
with ID numbers, as shown above. These point to the corresponding metadata contained in the CellML file for this
model and are displayed under the qualifier-resource-Id headings in the annotation window when you click on the
element in the editing window.

Note that the three annotations added above are all biological annotations. Many of the other components and variables
in the CellML potassium channel model deal with biophysical entities and these require the use of the OPB ontology
(yet to be implemented in OpenCOR). The use of composite annotations is also being developed8, such as “Ki is-the
concentration of potassium in-the cytosol of-the neuron of-the giant-squid”, where concentration, potassium, cytosol,
neuron and giant-squid are defined by the ontologies OPB, ChEBI, GO, FMA and a species ontology, respectively.

8 This is a project being carried out at the University of Washington, Seattle, using an annotation tool called SEMGEN (...).
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Fig. 3.38: The qualifier, resource & ID information in the middle panel appears when you click on the button next
to the selected term in Fig.32. GO identifier details are listed when either of the arrowed links are clicked.
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Fig. 3.39: The RDF triple used in CellML metadata to link a CellML element (component or variable) with an ontolog-
ical term from one of the five ontologies accessed via identifiers.org, using a predicate qualifier from BioModels.net.
The three examples of annotated CellML model elements shown are for (1) the potassium_channel component (this
points to a GO identifier), (2) the variable Ki, and (3) the variable Ko. These two variables are defined within the
potassium_channel component of the model and point to CHEBI identifiers. A further annotation is needed to identify
the cellular location of those variables (since one is intracellular and one is extracellular).

Speed comparisons with MATLAB

Solution speed is important for complex computational models and here we compare the performance of OpenCOR
with MATLAB1. Nine representative CellML models were chosen from the PMR model repository. For the MATLAB
tests we used the MATLAB code, generated automatically from CellML, that is available on the PMR site. These
comparisons are based on using the default solvers (listed below) available in the two packages.

Testing environment

• MacBook Pro (Retina, Mid 2012).

• Processor: 2.6 GHz Intel Core i7.

• Memory: 16 GB 1600 MHz DDR3.

• Operating system: OS X Yosemite 10.10.3.

OpenCOR

• Version: 0.4.1.

• Solver: CVODE with its default settings, except for its Maximum step parameter, which is set to the model’s
stimulation duration, if needed.

1 www.mathworks.com/products/matlab
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MATLAB

• Version: R2013a.

• Solver: ode15s (i.e. a solver suitable for stiff problems and which has low to medium order of accuracy) with
both its RelTol and AbsTol parameters set to 1e-7 and its MaxStep parameter set to the stimulation duration, if
needed.

Testing protocol

• Run a model for a given simulation duration.

• Generate simulation data every milliseconds.

• Only keep track of all the simulation data (i.e. no graphical output).

• Run a model 7 times, discard the 2 slowest runs (to account for unpredictable slowdowns of the testing machine)
and average the resulting computational times.

• Computational times are obtained directly from OpenCOR and MATLAB (through a couple of calls to cputime
in the case of MATLAB).

Results

CellML model (from PMR on
18/6/2015)

Duration
(s)

OpenCOR
time (s)

MATLAB
time (s)

Time ratio
(MATLAB/OpenCOR)

Bondarenko et al. 2004 10 1.16 140.14 121
Courtemanche et al. 1998 100 0.998 45.720 46
Faber & Rudy 2000 50 0.717 29.010 40
Garny et al. 2003 100 0.996 48.180 48
Luo & Rudy 1991 200 0.666 70.070 105
Noble 1962 1000 1.42 310.02 218
Noble et al. 1998 100 0.834 42.010 50
Nygren et al. 1998 100 0.824 31.370 38
ten Tusscher & Panfilov 2006 100 0.969 59.080 61

*The value of membrane.stim_end was increased so as to get action potentials for the duration of the simulation

Conclusions

For this range of tests, OpenCOR is between 38 and 218 times faster than MATLAB. A more extensive evaluation of
these results is available on GitHub2.

Future developments

Both CellML and OpenCOR are continuing to be developed. These notes will be updated to reflect new features of
both. The next release of OpenCOR (0.5) will include

• the SED-ML API which means that all the variables controlling the simulation and its output can be specified
in a file for that simulation

2 https://github.com/opencor/speedcomparison. These tests were carried out by Alan Garny.
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• the BioSignalML API which will allow experimental data to be read into OpenCOR in a standardised way

• colour plots, to better distinguish overlapping traces in the output windows

Priorities for later releases of OpenCOR include the incorporation of GIT into OpenCOR to enable the upload of
models to PMR, graphical rendering of the model structure (using SVG), model building templates, such as templates
for creating Markov models, tools for parameter estimation and tools for analysing model outputs.

The next release of CellML (1.2) will include the ability to specify a probability distribution for a parameter value.
Together with SED-ML, this will allow OpenCOR to generate error bounds on the solutions, corresponding to the
specified parameter uncertainty.

Link to weblab.

These notes are currently being extended to include

• a discussion of system identification and parameter estimation

• more extensive discussion of membrane protein models

• CellML modules for signal transduction pathways

References

See https://www.cellml.org/getting-started/tutorials.

Latest version rendered at: http://tutorial-on-cellml-opencor-and-pmr.readthedocs.org/en/latest/.

Todo

• Colour background of CellML Text

• Annotate screen shots with svg for same look and feel

• CellML Text code is not highlighted for all display situations, currently only in environments that are using an
adapted version of pygments

• Tidy up citations and BiBTeX source (possibly use Zotero to manage?)

• Make horizontal line for footnotes only visible in html output

• Check external references markup

• Consider a more suitable theme (may require changes to an existing one to get a good result)

• Must check over output (and models) from screenshots to make sure that it matches the current release of
OpenCOR, especially against running experiments for the first time.
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CHAPTER 4

Projects

In these projects we attempt to use “real world” scenarios to demonstrate the process of creating your own workflows,
making use of your experience working through the Clinical Workflows tasks.

Project: Parameter Estimation

This project was created as part of the Computational Physiology module in the MedTech CoRE Doctoral Training
Programme.

This project requires you to put together what you have learned in the tutorials to define a complete workflow which
we will use to manually optimise the material properties of a tissue model for use in mechanical simulations.

Outline

In this project we recreate a typical workflow that is often performed by scientists when creating a model. The standard
cardiac workflow used in the DTP module is shown in Fig. 4.1, which can be abstracted into the generic workflow
shown in Fig. 4.2.

In this project, we adapt the generic workflow shown in Fig. 4.2 to the specific scenario we are recreating. The specific
workflow for this project is described in Fig. 4.3.

Geometric model

As you may know, caridac tissue consists of cells aligned in fibres, as shown in Fig. 4.4. Mechanically, the tissue is
much stiffer in the fibre direction than in the cross-fibre direction, and so it is very important for any model of cardiac
tissue to take this into account.

In this project, we use the simplified geometric model shown in Fig. 4.5. While this is a relatively trivial model, it is a
reasonable approximation to an often used experimental preparation - the cardiac trabecula.
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Fig. 4.1: The standard example cardiac workflow used in the DTP Computational Physiology module.
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Fig. 4.2: The generic DTP Computational Physiology workflow.
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Fig. 4.3: The specific workflow for this project. The output for this workflow is to predict the passive mechanical
material properties of a piece of cardiac tissue given the results from a mechanical testing experiment. As is commonly
done, the actual experimental data will be extracted from a published paper where the actual data is only available as
a printed figure. The extracted data will be used to predict the material properties of an existing cardiac tissue model.
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Fig. 4.4: Illustrations of the fibrous nature of cardiac tissue.
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Fig. 4.5: The specific geometric model used in this project. In this tissue model the muscle fibres are aligned in the
same direction, indicated by the silver line. The blue plane indicates the orthogonal direction.
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Fig. 4.6 shows some simulation results when performing some passive stretch experiments using the tissue model
from Fig. 4.5. These results illustrate the difference in material properties when stretching the tissue in the fibre vs
cross-fibre direction.

Fig. 4.6: Simulation results from performing passive stretch experiments with our cardiac tissue model. The results
on the left show the resulting deformation and reaction forces when stretching the tissue in the direction of the tissue
fibres, while those on the right show the results when stretching in the cross-fibre direction. Each pair of results is the
same applied stretch. In particular, notice the much larger reaction forces in the fibre stretches - i.e., much more energy
needs to be applied in order to stretch the tissue along the fibres compared to across the fibres for the same magnitude
stretch.

Data collection

The first step in this project is to collect the experimental data that will be used in estimating the material properties
of this tissue. In this project we are using simulated experimental data so that we have some hope that this will be an
achievable task. You can see typical experimental data from a real cardiac trabecula that would be used in a lab here:
https://youtu.be/_VHZyPEpxsc.

Since our model is homogeneous and transversly isotropic, we can reduce the data required to parameterise the model
to two stress-strain relationships - one for the fibre direction and one of the orthogonal cross-fibre direction (see Fig.
4.6). Sample data we will use is shown in Fig. 4.7 and the segmentation method we will use to extract the numerical
values of the data is shown in Fig. 4.8.
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Fig. 4.7: Sample “experimental” data that could be used to estimate the material properties of our cardiac tissue model.
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Fig. 4.8: Illustrating the “manual segmentation” method that we will use to obtain the actual experimental data. When
extracting the numerical values, you will need to collect 5 data points for each of the fibre and cross-fibre relationships.
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Constitutive model

For this project, we want to predict the passive material properties of the cardiac tissue given the observed experimental
data in Fig. 4.7. So in addition to the geometric model in Fig. 4.5 we need a material constitutive model that captures
the cardiac tissue properties that we are interested in. For this project we will use the Guccione model. This model,
and many other potential models to use, is available in the Physiome Repository - https://models.physiomeproject.org/
e/26d/guccione.cellml/view. You will need to download the CellML file for this model from the repository, make
sure you save it somewhere convenient.

The equations for the Guccione model are shown in Fig. 4.9 (you can see the exact equations used in the model
repository - https://models.physiomeproject.org/e/26d/guccione.cellml/@@cellml_math).

Fig. 4.9: The equations of Guccione model defining the 6 components of the stress tensor, T, given the 6 components
of the strain tensor, E. The four material parameters we want to estimate in this project are highlighted (c1 ... c4). The
transverse isotropic nature of this model can be seen by comparing the equation for the fibre stress (T11) to that for
both of the the cross-fibre stresses (T22 and T33). Understanding which material parameters are important for each of
the stress-strain relationships will help guide your parameter estimation.

Workflow construction

Following the “manual segmentation” method, we will be using a manual parameter estimation method to predict the
passive material properties of the cardiac tissue described in Fig. 4.7. Therefore, the second step in this project is to
construct a workflow in MAP Client that will let you perform some simulations using the cardiac tissue model with
your estimated material parameters, and then compare your simulation results to the data you measured.

You will need to start MAP Client and create a new workflow via the menu item File → New → Workflow. This just
requires you to select a folder: create a new, empty folder, for example estimationproject on the Desktop, and
select it.

For this project you will need to make use of the following MAP Client steps.

• Iron Simulation – to perform the actual simulation.

• Simulation Review – to compare simulated data to measured data.

• Graph Segmentation – to enter the numeric values extracted from the experimental data.

• File Chooser – to provide the CellML file for the Guccione model.

• Directory Chooser – to define an output folder to store the simulation results.

• Parameter Setting – to define your current estimate of the passive material properties.
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We suggest starting with the Iron Simulation step and using the port definitions to determine the workflow connectivity.
In the configuration of the workflow, you should be able to enter your current estimates for the four material parameters
and the numeric values measured from the experimental data. The Graph Segmentation step expects 10 data points to
be given – the first 5 should be the fibre direction and the second 5 the cross-fibre direction.

On execution, your workflow should perform the required simulations and present you with a comparison of your
simulation results with the measured experimental data.

Parameter estimation

As mentioned, we will be using a manual estimation process in this project. This requires you to use your workflow to
estimate parameter values and compare the predicted tissue behaviour to that you have measured from the experimental
data. And then repeat until you are happy with the comparison.

Some tips that might help:

• the parameter values are whole numbers

• what is the main effect of each of the parameters?

• how accurate are your measured values?

• how accurate is the printed graph?

Project: Femur Fitting

This project was created as part of the Computational Physiology module in the MedTech CoRE Doctoral Training
Programme.

This project requires you to put together what you have learned in the tutorials to define a complete workflow which
will create a customised model of the end of a femur bone by fitting it to medical images, perform some computational
simulation with it and visualise the result.

Outline

You will need to start MAP Client and create a new workflow via the menu item File → New → Workflow. This just
requires you to select a folder: create a new, empty folder, for example “femurproject” on the Desktop, and select it.

At this point the MAP Client interface will show a blank project and a list of plugins you can use, as shown in Fig.
4.10:

For this project you will use the following plugins for steps in the workflow:

• Image Source - for selecting a folder of images to digitise

• Segmentation (Manual) - for digitising points in the image stack for segmenting the femur surface

• Create Hemisphere Model - for constructing a template mesh to fit to the femur data

• smoothfit - for fitting the input model to the digitised points

• Load Femur - for performing some heavy math on the fitted model

• simpleviz - for visualising the results

These are added to your workflow by dragging them into the working area (with the blue grid, like graph paper). Each
step must be configured by clicking on its gear-shaped settings icon, which is initially red but changes to green when
correctly configured. At a minimum you must give each step a unique name in this workflow (intermediate data is
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Fig. 4.10: The MAP Client interface showing some of the plugins to use in this project. (Note that your version should
have additional plugins.)
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saved under this name), and set any other options for sources to the workflow. You will need to connect the input and
output ports for each step.

Tips for completing the project

• For initial input to the Segmentation tool you will want to select folder DTP-data/complete_workflow/
knee_mri (the location of the DTP-data folder will be given to you).

• When digitising points on the medical images, make sure you create adequate points to define the curved sur-
faces: it’s easy to underspecify the shape at the end of rounded body. You may wish to rotate the plane you’re
digitising on to suit capturing the femur shape. It takes a while to digitise so routinely save the data, and a final
time before clicking ‘done’. Next time you run the workflow you can click ‘load’ to reload it.

• You must configure the Create Hemisphere Model step with 12 elements around, 3 elements up and 1 element
along stem to work with this project. With this number of elements you’ll need plenty of high quality digitised
points, and careful use of the strain penalty when fitting!

• The smoothfit step has 3 inputs: the top one is the initial model, the bottom one is a cloud of data points (as
output by the Segmentation tool). The middle one is unused here as it used as an alternative data point cloud,
read from an EX format file. Be sure to save your final transformation so you can re-load it next time the
workflow is run.

• Note it takes a few seconds to perform each fit iteration, and a similar amount of time to perform the Load Femur
maths. Be patient; the interface for the next step will display when ready.

• When initially visualising you will see nothing! Create surfaces and try to view the stress on it. Add a colour
bar and try creating some other graphics. Save the resulting image.

Your final visualisation will look something like Fig. 4.11:

Scoring

The tutors will give a score out of 10 based on both how realistic the final femur shape is, and how attractive the output
image is (tip: choose visualisation settings maximise quality, and think about balance of the image). You may re-run
the workflow to add or fix the digitised points (be sure to load the current ones first!), improve fitting etc. to try to
increase your score.

Project: Bond Graph

This project was created as part of the Computational Physiology module in the MedTech CoRE Doctoral Training
Programme.

This project requires you to put together what you have learned in the tutorials to define a complete workflow which
will create the Hill muscle model using the bond graph technique to simulate the human gait motion.

Outline

The Hill muscle model showed in Fig. 4.12 can be represented with the Bond Graph technique using 1-junctions
for common velocity points, 0-junctions for common force points, an tension source Se for the contractile tension, a
resistor element R for the mechanical damper, and two capacitor elements K for springs.

The linear force FM produced by a muscle can be transformed to an applied torque at a body joint through a modulated
transformer element MTF whose modulus r reflects the moment arm from a muscle’s attachment point center of
rotation. This modulus r is a function of the joint angel 𝜃 and depends on the physiological data of each muscle.
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Fig. 4.11: Visualisation of the final result of the femur project. Your result may use different graphics, and will differ
because your digitisation and fitting will always make a unique result.
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Fig. 4.12 illustrates the Hill model. There are four basic elements in it: 1) contractile element, C; 2) damping element,
B; 3) series elastic component, 𝐾𝑆𝐸𝐶 ; and 4) parallel elastic component, 𝐾𝑃𝐸𝐶 .

In this project we create the Hill muscle model using the bond graph technique.

Fig. 4.12: Hill model.

Tips for completing the project

• Contractile element: The contractile element C is the active element in an extrafusal motor unit. It corresponds
to the role played by voltage in an electronic circuit. C responds to motoneuron inputs by contracting. Thus,
the tension TC that it produces always acts to try to shorten the muscle. C is incapable to produce an extension
force.

• The elastic elements: A muscle when passively stretched exhibits an elastic restoring force that tends to return
the muscle to its original length. In part this force is due to stretching the connective tissue that surrounds the
muscle fibers. In part it may be due to stretching the tendons which terminate muscle tissue and attach it to the
bone. There is a reason to believe that the muscle fibers themselves are at least partly elastic. It is this elastic
restoring force that is represented by the elastic elements (springs) in the Hill model. It is not completely correct
to assign these elements to any particular physical source, but we may regard the 𝐾𝑃𝐸𝐶 as being mostly due to
the connective tissues and the 𝐾𝑆𝐸𝐶 as being primarily dominated by tendon fibers terminating specific motor
units. We should note that 𝐾𝑃𝐸𝐶 and 𝐾𝑆𝐸𝐶 are functions of lengths and therefore are non-linear springs.

• The damper element: It is an empirical factor that muscle tension during contraction and the speed of the con-
traction are coupled to each other. Hill found that the relation between them follows a characteristic hyperbolic
equation, now known as Hill’s equation. Such elastic elements, the damper coefficient B is a function of the
contraction speed, therefore is a nonlinear damper.

The full Bond Graph muscle model is shown in Fig. 4.13.
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Fig. 4.13: Full Bond Graph muscle model.
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CHAPTER 5

DTP Computational Physiology to do list

General

Todo

• any general todo’s go here.

• make sure the todo’s are turned off in the config?

Within sections

Todo

• Colour background of CellML Text

• Annotate screen shots with svg for same look and feel

• CellML Text code is not highlighted for all display situations, currently only in environments that are using an
adapted version of pygments

• Tidy up citations and BiBTeX source (possibly use Zotero to manage?)

• Make horizontal line for footnotes only visible in html output

• Check external references markup

• Consider a more suitable theme (may require changes to an existing one to get a good result)

• Must check over output (and models) from screenshots to make sure that it matches the current release of
OpenCOR, especially against running experiments for the first time.

137



DTP Computational Physiology Documentation, Release 2017.02

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dtp-
compphys/checkouts/v2017.02/source/opencor-tutorial/source/index.rst, line 74.)

Todo

• any general todo’s go here.

• make sure the todo’s are turned off in the config?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/dtp-
compphys/checkouts/v2017.02/source/todolist.rst, line 9.)
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